Environmental Testing Methods
Mar 15, 2025
"Environmental testing" refers to the process of exposing products or materials to natural or artificial environmental conditions under specified parameters to evaluate their performance under potential storage, transportation, and usage conditions. Environmental testing can be categorized into three types: natural exposure testing, field testing, and artificial simulation testing. The first two types of testing are costly, time-consuming, and often lack repeatability and regularity. However, they provide a more accurate reflection of real-world usage conditions, making them the foundation for artificial simulation testing. Artificial simulation environmental testing is widely used in quality inspection. To ensure comparability and reproducibility of test results, standardized methods for basic environmental testing of products have been established.
Below are the environmental tests methods that can achieve by using environmental test chamber:
(1) High and Low Temperature Testing: Used to assess or determine the adaptability of products to storage and/or use under high and low temperature conditions.
(2) Thermal Shock Testing: Determines the adaptability of products to single or multiple temperature changes and the structural integrity under such conditions.
(3) Damp Heat Testing: Primarily used to evaluate the adaptability of products to damp heat conditions (with or without condensation), particularly focusing on changes in electrical and mechanical performance. It can also assess the product's resistance to certain types of corrosion.
Constant Damp Heat Testing: Typically used for products where moisture absorption or adsorption is the primary mechanism, without significant respiration effects. This test evaluates whether the product can maintain its required electrical and mechanical performance under high temperature and humidity conditions, or whether sealing and insulating materials provide adequate protection.
Cyclic Damp Heat Testing: An accelerated environmental test to determine the product's adaptability to cyclic temperature and humidity changes, often resulting in surface condensation. This test leverages the product's "breathing" effect due to temperature and humidity changes to alter internal moisture levels. The product undergoes cycles of heating, high temperature, cooling, and low temperature in a cyclic damp heat chamber, repeated as per technical specifications.
Room Temperature Damp Heat Testing: Conducted under standard temperature and high relative humidity conditions.
(4) Corrosion Testing: Evaluates the product's resistance to saltwater or industrial atmospheric corrosion, widely used in electrical, electronic, light industry, and metal material products. Corrosion testing includes atmospheric exposure corrosion testing and artificial accelerated corrosion testing. To shorten the testing period, artificial accelerated corrosion testing, such as neutral salt spray testing, is commonly used. Salt spray testing primarily assesses the corrosion resistance of protective decorative coatings in salt-laden environments and evaluates the quality of various coatings.
(5) Mold Testing: Products stored or used in high temperature and humidity environments for extended periods may develop mold on their surfaces. Mold hyphae can absorb moisture and secrete organic acids, degrading insulation properties, reducing strength, impairing optical properties of glass, accelerating metal corrosion, and deteriorating product appearance, often accompanied by unpleasant odors. Mold testing evaluates the extent of mold growth and its impact on product performance and usability.
(6) Sealing Testing: Determines the product's ability to prevent the ingress of dust, gases, and liquids. Sealing can be understood as the protective capability of the product's enclosure. International standards for electrical and electronic product enclosures include two categories: protection against solid particles (e.g., dust) and protection against liquids and gases. Dust testing checks the sealing performance and operational reliability of products in sandy or dusty environments. Gas and liquid sealing testing evaluates the product's ability to prevent leakage under conditions more severe than normal operating conditions.
(7) Vibration Testing: Assesses the product's adaptability to sinusoidal or random vibrations and evaluates structural integrity. The product is fixed on a vibration test table and subjected to vibrations along three mutually perpendicular axes.
(8) Aging Testing: Evaluates the resistance of polymer material products to environmental conditions. Depending on the environmental conditions, aging tests include atmospheric aging, thermal aging, and ozone aging tests.
Atmospheric Aging Testing: Involves exposing samples to outdoor atmospheric conditions for a specified period, observing performance changes, and evaluating weather resistance. Testing should be conducted in outdoor exposure sites that represent the most severe conditions of a particular climate or approximate actual application conditions.
Thermal Aging Testing: Involves placing samples in a thermal aging chamber for a specified period, then removing and testing their performance under defined environmental conditions, comparing results to pre-test performance.
(9) Transport Packaging Testing: Products entering the distribution chain often require transport packaging, especially precision machinery, instruments, household appliances, chemicals, agricultural products, pharmaceuticals, and food. Transport packaging testing evaluates the packaging's ability to withstand dynamic pressure, impact, vibration, friction, temperature, and humidity changes, as well as its protective capability for the contents.
These standardized testing methods ensure that products can withstand various environmental stresses, providing reliable performance and durability in real-world applications.
LEER MÁS