bandera
Hogar

Cámara de pruebas climáticas

Cámara de pruebas climáticas

  • Una breve discusión sobre el uso y mantenimiento de la cámara de pruebas ambientales
    May 10, 2025
    Ⅰ. Uso adecuado de COMPAÑERO DE LABORATORIOEl instrumento deLos equipos de pruebas ambientales siguen siendo instrumentos de precisión y gran valor. Su correcto funcionamiento y uso no solo proporcionan datos precisos al personal de pruebas, sino que también garantizan un funcionamiento normal a largo plazo y prolongan la vida útil del equipo. En primer lugar, antes de realizar pruebas ambientales, es fundamental familiarizarse con el rendimiento de las muestras, las condiciones, los procedimientos y las técnicas de prueba. Es fundamental comprender a fondo las especificaciones técnicas y la estructura del equipo de prueba, en particular el funcionamiento y la funcionalidad del controlador. Leer atentamente el manual de funcionamiento del equipo puede prevenir fallos de funcionamiento causados ​​por errores operativos, que podrían dañar las muestras o generar datos de prueba inexactos. En segundo lugar, seleccione el equipo de prueba adecuado. Para garantizar una ejecución fluida de la prueba, se debe elegir el equipo adecuado según las características de las muestras. Se debe mantener una proporción razonable entre el volumen de la muestra y la capacidad efectiva de la cámara de prueba. Para muestras que disipan calor, el volumen no debe superar una décima parte de la capacidad efectiva de la cámara. Para muestras que no se calientan, el volumen no debe superar una quinta parte. Por ejemplo, un televisor a color de 21 pulgadas sometido a pruebas de almacenamiento de temperatura puede caber bien en una cámara de 1 metro cúbico, pero se requiere una cámara más grande cuando el televisor está encendido debido a la generación de calor. En tercer lugar, coloque las muestras de prueba correctamente. Las muestras deben colocarse al menos a 10 cm de las paredes de la cámara. Siempre que sea posible, varias muestras deben colocarse en el mismo plano. La ubicación no debe obstruir la entrada ni la salida de aire, y debe dejarse suficiente espacio alrededor de los sensores de temperatura y humedad para garantizar lecturas precisas. En cuarto lugar, para las pruebas que requieren medios adicionales, se debe agregar el tipo correcto según las especificaciones. Por ejemplo, el agua utilizada en cámaras de prueba de humedad Debe cumplir requisitos específicos: la resistividad no debe ser inferior a 500 Ω·m. El agua del grifo suele tener una resistividad de 10 a 100 Ω·m, la del agua destilada de 100 a 10 000 Ω·m y la del agua desionizada de 10 000 a 100 000 Ω·m. Por lo tanto, para las pruebas de humedad se debe utilizar agua destilada o desionizada, y debe ser fresca, ya que el agua expuesta al aire absorbe dióxido de carbono y polvo, lo que reduce su resistividad con el tiempo. El agua purificada disponible en el mercado es una alternativa económica y práctica. En quinto lugar, el uso correcto de las cámaras de prueba de humedad. La gasa o el papel de bulbo húmedo utilizado en las cámaras de humedad debe cumplir con estándares específicos; no cualquier gasa puede sustituirlo. Dado que las lecturas de humedad relativa se derivan de la diferencia de temperatura entre el bulbo seco y el bulbo húmedo (en rigor, también influenciada por la presión atmosférica y el flujo de aire), la temperatura del bulbo húmedo depende de las tasas de absorción y evaporación de agua, que se ven directamente afectadas por la calidad de la gasa. Las normas meteorológicas exigen que la gasa de bulbo húmedo sea una "gasa de bulbo húmedo" especializada, hecha de lino. Una gasa incorrecta puede provocar un control de humedad impreciso. Además, la gasa debe instalarse correctamente: 100 mm de longitud, firmemente enrollada alrededor de la sonda del sensor, con la sonda colocada a 25-30 mm por encima del recipiente de agua, y la gasa sumergida en agua para garantizar un control preciso de la humedad. II. Mantenimiento de equipos de pruebas ambientalesLos equipos de pruebas ambientales son de diversos tipos, pero los más comunes son las cámaras de alta temperatura, baja temperatura y humedad. Recientemente, se han popularizado las cámaras de prueba combinadas de temperatura y humedad que integran estas funciones. Estas son más complejas de reparar y sirven como ejemplos representativos. A continuación, se analiza la estructura, las fallas comunes y los métodos de solución de problemas de las cámaras de prueba de temperatura y humedad. (1) Estructura de cámaras de prueba comunes de temperatura y humedadAdemás del correcto funcionamiento, el personal de pruebas debe comprender la estructura del equipo. Una cámara de pruebas de temperatura y humedad consta de un cuerpo, un sistema de circulación de aire, un sistema de refrigeración, un sistema de calefacción y un sistema de control de humedad. El sistema de circulación de aire suele tener una dirección de flujo de aire ajustable. El sistema de humidificación puede utilizar métodos de evaporación superficial o con caldera. El sistema de refrigeración y deshumidificación emplea un ciclo de refrigeración de aire acondicionado. El sistema de calefacción puede utilizar calentadores eléctricos de aletas o calefacción directa por resistencia. Los métodos de medición de temperatura y humedad incluyen la prueba de bulbo seco-húmedo o sensores directos de humedad. Las interfaces de control y visualización pueden incluir controladores de temperatura y humedad independientes o combinados. (2) Fallos comunes y métodos de solución de problemas para Cámaras de prueba de temperatura y humedad1. Problemas de pruebas de alta temperatura Si la temperatura no alcanza el valor establecido, inspeccione el sistema eléctrico para identificar fallas.Si la temperatura sube demasiado lentamente, verifique el sistema de circulación de aire, asegurándose de que el regulador esté correctamente ajustado y que el motor del ventilador esté funcionando.Si se produce un sobrepaso de temperatura, vuelva a calibrar los ajustes del PID.Si la temperatura aumenta sin control, es posible que el controlador esté defectuoso y deba reemplazarse. 2. Problemas de prueba a baja temperatura Si la temperatura baja demasiado lentamente o rebota después de alcanzar cierto punto: Asegúrese de que la cámara esté previamente secada antes de realizar la prueba. Verifique que las muestras no estén sobrepobladas, obstruyendo el flujo de aire. Si se descartan estos factores, es posible que el sistema de refrigeración necesite servicio profesional.El rebote de temperatura a menudo se debe a malas condiciones ambientales (por ejemplo, espacio libre insuficiente detrás de la cámara o temperatura ambiente alta). 3. Problemas con la prueba de humedad Si la humedad alcanza el 100% o se desvía significativamente del objetivo: Para una humedad del 100 %: Compruebe que la malla de bulbo húmedo esté seca. Inspeccione el nivel de agua en el depósito del sensor de bulbo húmedo y en el sistema automático de suministro de agua. Reemplace o limpie la malla endurecida si es necesario. En caso de baja humedad: Verifique el suministro de agua y el nivel de la caldera del sistema de humidificación. Si estos valores son normales, es posible que el sistema de control eléctrico requiera una reparación profesional. 4. Fallas de emergencia durante el funcionamiento Si el equipo presenta fallas, el panel de control mostrará un código de error con una alarma sonora. Los operadores pueden consultar la sección de resolución de problemas del manual para identificar el problema y solicitar reparaciones profesionales para reanudar las pruebas lo antes posible. Otros equipos de pruebas ambientales pueden presentar diferentes problemas, que deben analizarse y resolverse caso por caso. El mantenimiento regular es esencial, incluyendo la limpieza del condensador, la lubricación de las piezas móviles y la inspección de los controles eléctricos. Estas medidas son indispensables para garantizar la longevidad y la fiabilidad del equipo.
    LEER MÁS
  • Guía del usuario para equipos de pruebas ambientales
    Apr 26, 2025
    1. Conceptos básicosLos equipos de prueba ambiental (a menudo denominados "cámaras de prueba climática") simulan diversas condiciones de temperatura y humedad para fines de prueba. Con el rápido crecimiento de industrias emergentes como la inteligencia artificial, las nuevas energías y los semiconductores, las pruebas ambientales rigurosas se han vuelto esenciales para el desarrollo y la validación de productos. Sin embargo, los usuarios a menudo enfrentan dificultades al seleccionar equipos debido a la falta de conocimientos especializados. A continuación, se presentarán los parámetros básicos de la cámara de prueba ambiental, para ayudarlo a realizar una mejor elección de productos. 2. Especificaciones técnicas clave(1) Parámetros relacionados con la temperatura1. Rango de temperatura Definición: El rango de temperatura extremo en el que el equipo puede funcionar de forma estable durante largos períodos. Rango de alta temperatura: Cámaras estándar de alta temperatura: 200℃, 300℃, 400℃, etc. Cámaras de temperatura alta y baja: los modelos de alta calidad pueden alcanzar entre 150 y 180 ℃.Recomendación práctica: 130℃ es suficiente para la mayoría de aplicaciones. Rango de baja temperatura:Refrigeración de una sola etapa: alrededor de -40 ℃.Refrigeración en cascada: alrededor de -70 ℃.Opciones económicas: -20℃ o 0℃. 2. Fluctuación de temperatura Definición: La variación de temperatura en cualquier punto dentro de la zona de trabajo después de la estabilización. Requisito estándar: ≤1℃ o ±0,5℃. Nota: La fluctuación excesiva puede afectar negativamente otras métricas de rendimiento de temperatura. 3. Uniformidad de temperatura Definición: La diferencia máxima de temperatura entre dos puntos cualesquiera en la zona de trabajo. Requisito estándar: ≤2℃. Nota: Mantener esta precisión se vuelve difícil a altas temperaturas (>200℃). 4. Desviación de temperatura Definición: La diferencia de temperatura media entre el centro de la zona de trabajo y otros puntos. Requisito estándar: ±2℃ (o ±2% a altas temperaturas). 5. Tasa de cambio de temperatura Consejos de compra:Definir claramente los requisitos de pruebas reales.Proporcionar información detallada de la muestra (dimensiones, peso, material, etc.).Solicitar datos de rendimiento en condiciones de carga. (¿Cuántos productos va a probar a la vez?)Evite confiar únicamente en las especificaciones del catálogo. (2) Parámetros relacionados con la humedad1. Rango de humedad Característica clave: Un parámetro dual dependiente de la temperatura. Recomendación: Concéntrese en si el nivel de humedad requerido se puede mantener de forma estable. 2. Desviación de humedad Definición: La uniformidad de la distribución de la humedad dentro de la zona de trabajo. Requisito estándar: ±3%HR (±5%HR en zonas de baja humedad). (3) Otros parámetros1. Velocidad del flujo de aire Generalmente no es un factor crítico a menos que lo especifiquen las normas de prueba. 2. Nivel de ruido Valores estándar:Cámaras de humedad: ≤75 dB.Cámaras de temperatura: ≤80 dB. Recomendaciones para el entorno de oficina:Equipos pequeños: ≤70 dB.Equipos grandes: ≤73 dB. 3. Recomendaciones de compraSeleccione parámetros según las necesidades reales, evitando especificar en exceso.Priorizar la estabilidad a largo plazo en el desempeño.Solicitar datos de prueba cargados a los proveedores.Verificar las dimensiones efectivas reales de la zona de trabajo.Especifique con antelación las condiciones especiales de uso (por ejemplo, entornos de oficina).
    LEER MÁS
  • Resumen de las condiciones de prueba de LED
    Apr 22, 2025
    ¿Qué es un LED? Un diodo emisor de luz (LED) es un tipo especial de diodo que emite luz monocromática y discontinua al aplicar una tensión directa, un fenómeno conocido como electroluminiscencia. Al alterar la composición química del material semiconductor, los LED pueden producir luz ultravioleta cercana, visible o infrarroja. Inicialmente, los LED se utilizaban principalmente como luces indicadoras y paneles de visualización. Sin embargo, con la llegada de los LED blancos, ahora también se emplean en aplicaciones de iluminación. Reconocidos como la nueva fuente de luz del siglo XXI, los LED ofrecen ventajas incomparables, como alta eficiencia, larga vida útil y durabilidad, en comparación con las fuentes de luz tradicionales. Clasificación por brillo: LED de brillo estándar (fabricados con materiales como GaP, GaAsP) LED de alto brillo (fabricados con AlGaAs) LED de brillo ultraalto (fabricados con otros materiales avanzados) ☆ Diodos infrarrojos (IRED): emiten luz infrarroja invisible y sirven para diferentes aplicaciones.   Descripción general de las pruebas de confiabilidad de LED: Los LED se desarrollaron por primera vez en la década de 1960 y se utilizaron inicialmente en señales de tráfico y productos de consumo. Solo en los últimos años se han adoptado para la iluminación y como fuentes de luz alternativas. Notas adicionales sobre la vida útil del LED: Cuanto menor sea la temperatura de unión del LED, mayor será su vida útil, y viceversa. Vida útil del LED a altas temperaturas: 10.000 horas a 74 °C 25.000 horas a 63 °C Como producto industrial, las fuentes de luz LED deben tener una vida útil de 35.000 horas (tiempo de uso garantizado). Las bombillas tradicionales suelen tener una vida útil de unas 1.000 horas. Se espera que las farolas LED duren más de 50.000 horas. Resumen de las condiciones de prueba de LED: Prueba de choque térmico Temperatura de choque 1 Temperatura ambiente Temperatura de choque 2 Tiempo de recuperación Ciclos Método de choque Observaciones -20℃(5 min) 2 90℃(5 minutos)   2 Amortiguador de gas   -30℃(5 min) 5 105℃(5 min)   10 Amortiguador de gas   -30℃(30 min)   105℃(30 min)   10 Amortiguador de gas   88℃(20 min)   -44℃(20 min)   10 Amortiguador de gas   100℃(30 min)   -40℃(30 min)   30 Amortiguador de gas   100℃(15 min)   -40℃(15 min) 5 300 Amortiguador de gas LED HB 100℃(5 min)   -10℃(5 min)   300 Choque líquido LED HB   Prueba de LED de alta temperatura y alta humedad (prueba THB) Temperatura/humedad Tiempo Observaciones 40 °C/95 % de humedad relativa 96 horas   60 °C/85 % de humedad relativa 500 horas Prueba de vida útil de los LED 60 °C/90 % de humedad relativa 1000 horas Prueba de vida útil de los LED 60 °C/95 % de humedad relativa 500 horas Prueba de vida útil de los LED 85 °C/85 % de humedad relativa 50 horas   85 °C/85 % de humedad relativa 1000 horas Prueba de vida útil de los LED   Prueba de vida útil a temperatura ambiente 27℃ 1000 horas Iluminación continua a corriente constante   Prueba de vida útil a alta temperatura (prueba HTOL) 85℃ 1000 Hora Iluminación continua a corriente constante 100℃ 1000 Hora Iluminación continua a corriente constante   Prueba de vida útil a baja temperatura (prueba LTOL) -40℃ 1000 Hora Iluminación continua a corriente constante -45℃ 1000 Hora Iluminación continua a corriente constante   Prueba de soldabilidad Condición de prueba Observaciones Los pines del LED (a 1,6 mm del fondo del coloide) se sumergen en un baño de estaño a 260 °C durante 5 segundos.   Los pines del LED (a 1,6 mm del fondo del coloide) se sumergen en un baño de estaño a 260+5 °C durante 6 segundos.   Los pines del LED (a 1,6 mm del fondo del coloide) se sumergen en un baño de estaño a 300 °C durante 3 segundos.     Prueba del horno de soldadura por reflujo 240℃ 10 segundos   Prueba ambiental (Realizar un tratamiento de soldadura TTW durante 10 segundos a una temperatura de 240 °C ± 5 °C) Nombre de la prueba Estándar de referencia Consulte el contenido de las condiciones de prueba en JIS C 7021 Recuperación Número de ciclo (H) Ciclos de temperatura Especificación automotriz -40 °C ←→ 100 °C, con un tiempo de permanencia de 15 minutos 5 minutos 5/50/100 Ciclos de temperatura   60 °C/95 % HR, con corriente aplicada   50/100 Polarización inversa de humedad Método MIL-STD-883 60 °C/95 % de humedad relativa, 5 V RB   50/100  
    LEER MÁS
  • Comparación de prueba climática y prueba ambiental Comparación de prueba climática y prueba ambiental
    Sep 19, 2024
    Comparación de prueba climática y prueba ambientalPrueba de entorno climático: cámara de prueba de temperatura y humedad constantes, cámara de prueba de temperatura alta y baja, cámara de prueba de choque frío y caliente, cámara de prueba de alternancia de calor y humedad, cámara de prueba de cambio rápido de temperatura, cámara de prueba de cambio de temperatura lineal, temperatura constante sin cita previa y cámara de prueba de humedad, etc. Todos ellos implican control de temperatura.Debido a que existen múltiples puntos de control de temperatura para elegir, el método de control de temperatura de la cámara climática también tiene tres soluciones: control de temperatura de entrada, control de temperatura del producto y control de temperatura en "cascada". Los dos primeros son control de temperatura de un solo punto y el tercero es control de temperatura de dos parámetros.El método de control de temperatura de un solo punto ha sido muy maduro y ampliamente utilizado.La mayoría de los primeros métodos de control eran controles de interruptores de "ping-pong", comúnmente conocidos como calefacción cuando hacía frío y refrigeración cuando hacía calor. Este modo de control es un modo de control de retroalimentación. Cuando la temperatura del flujo de aire en circulación es mayor que la temperatura establecida, la válvula electromagnética de refrigeración se abre para entregar un volumen frío al flujo de aire en circulación y reducir la temperatura del flujo de aire. De lo contrario, se activa el interruptor de circuito del dispositivo de calefacción para calentar directamente el flujo de aire circulante. Elevar la temperatura de la corriente de aire. Este modo de control requiere que el dispositivo de refrigeración y los componentes de calefacción de la cámara de prueba estén siempre en un estado de funcionamiento en espera, lo que no sólo desperdicia mucha energía, sino que también el parámetro controlado (temperatura) está siempre en un estado de "oscilación", y la precisión del control no es alta.Ahora, el método de control de temperatura de un solo punto se ha cambiado principalmente al método de control integral diferencial proporcional (PID), que puede proporcionar la corrección de temperatura controlada de acuerdo con el cambio pasado del parámetro controlado (control integral) y la tendencia de cambio (control diferencial). ), lo que no solo ahorra energía, sino que también la amplitud de "oscilación" es pequeña y la precisión del control es alta.El control de temperatura de doble parámetro consiste en recopilar el valor de temperatura de la entrada de aire de la cámara de prueba y el valor de temperatura cerca del producto al mismo tiempo. La entrada de aire de la cámara de prueba está muy cerca de la posición de instalación del evaporador y el calentador en la sala de modulación de aire, y su magnitud refleja directamente el resultado de la modulación de aire. El uso de este valor de temperatura como parámetro de control de retroalimentación tiene la ventaja de modular rápidamente los parámetros de estado del aire en circulación.El valor de temperatura cerca del producto indica las condiciones ambientales de temperatura real que sufre el producto, que es el requisito de la especificación de prueba ambiental. El uso de este valor de temperatura como parámetro del control de retroalimentación puede garantizar la efectividad y credibilidad de la prueba ambiental de temperatura, por lo que este enfoque tiene en cuenta las ventajas de ambos y los requisitos de la prueba real. La estrategia de control de temperatura de doble parámetro puede ser el "control de tiempo compartido" independiente de los dos grupos de datos de temperatura, o los dos valores de temperatura ponderados se pueden combinar en un valor de temperatura como una señal de control de retroalimentación de acuerdo con un cierto coeficiente de ponderación. y el valor del coeficiente de ponderación está relacionado con el tamaño de la cámara de prueba, la velocidad del viento del flujo de aire circulante, el tamaño de la tasa de cambio de temperatura, la producción de calor del trabajo del producto y otros parámetros.Debido a que la transferencia de calor es un proceso físico dinámico complejo y se ve muy afectada por las condiciones ambientales atmosféricas alrededor de la cámara de prueba, el estado de funcionamiento de la propia muestra probada y la complejidad de la estructura, es difícil establecer un modelo matemático perfecto para el control de temperatura y humedad de la cámara de prueba. Para mejorar la estabilidad y precisión del control, se introducen la teoría y el método de control de lógica difusa en el control de algunas cámaras de prueba de temperatura. En el proceso de control, se simula el modo de pensamiento humano y se adopta el control predictivo para controlar el campo espacial de temperatura y humedad más rápidamente.En comparación con la temperatura, la selección de los puntos de control y medición de la humedad es relativamente sencilla. Durante el flujo de circulación del aire húmedo bien regulado hacia la cámara de prueba del ciclo de alta y baja temperatura, el intercambio de moléculas de agua entre el aire húmedo y la pieza de prueba y las cuatro paredes de la cámara de prueba es muy pequeño. Mientras la temperatura del aire en circulación sea estable, el flujo de aire en circulación desde la entrada a la cámara de prueba hasta la salida de la cámara de prueba está en proceso. El contenido de humedad del aire húmedo cambia muy poco. Por lo tanto, el valor de humedad relativa del aire detectado en cualquier punto del campo de flujo de aire circulante en la caja de prueba, como la entrada, la corriente media del campo de flujo o la salida de aire de retorno, es básicamente el mismo. Debido a esto, en muchas cámaras de prueba que utilizan el método de bulbo húmedo y seco para medir la humedad, el sensor de bulbo húmedo y seco se instala en la salida de aire de retorno de la cámara de prueba. Además, debido al diseño estructural de la caja de prueba y la conveniencia del mantenimiento en uso, el sensor de bulbo húmedo y seco utilizado para la medición y control de la humedad relativa se coloca en la entrada de aire de retorno para una fácil instalación y también ayuda a reemplazar regularmente el sensor húmedo. gasa del bulbo y limpie el cabezal sensor de temperatura de la resistencia PT100, y de acuerdo con los requisitos de la prueba de calor húmedo GJB150.9A 6.1.3. La velocidad del viento que pasa a través del sensor de bulbo húmedo no debe ser inferior a 4,6 m/s. El sensor de bulbo húmedo con un pequeño ventilador está instalado en la salida de aire de retorno para facilitar el mantenimiento y el uso.   
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos