bandera
Hogar

Cámara de prueba de cambio rápido de temperatura

Cámara de prueba de cambio rápido de temperatura

  • What is Environmental Testing? What is Environmental Testing?
    Jan 06, 2024
    What is Environmental Testing? The electronic devices and industrial products we rely on every day are affected by the environment in many ways, including temperature, humidity, pressure, light, electromagnetic waves and vibration. Environmental testing analyzes and evaluates the impact of these environmental factors on the product to determine its durability and reliability. Guangdong Lab Companion LTD., has 10 million yuan registered capital and 3 R & D manufacturing plants in Dongguan, Kunshan and Chongqing. Lab Companion has been specialized in high and low temperature test equipment technology for 19 years, operating according to ISO9001, ISO14001, ISO 45001, ISO27001 four systems, setting sales and maintenance service centers in Shanghai, Wuhan, Chengdu, Chongqing, Xi 'an and Hong Kong. We work closely with International Organization of Leg al Metrology, Chinese Academy of Sciences, State Grid, China Southern Power Grid, Tsinghua University, Peking University, Hong Kong University of Science and Technology and other research institutions. Main products of Lab Companion includes high and low temperature test chamber, constant temperature and humidity test chamber, rapid temperature cycling test chamber, thermal shock test chamber, high and low temperature and low pressure test chamber, vibration of the comprehensive chamber, industrial oven, vacuum oven, nitrogen oven, etc, providing high quality experimental equipment for universities, research institutes, medical health, inspection and quarantine, environmental monitoring, food and drugs, automobile manufacturing, petrochemical, rubber and plastic products, IC semiconductor, IT manufacturing and other fields.
    LEER MÁS
  • Thermal Cycling Test(TC) & Thermal Shock Test(TS) Thermal Cycling Test(TC) & Thermal Shock Test(TS)
    Jan 07, 2024
    Thermal Cycling Test(TC) & Thermal Shock Test(TS) Thermal Cycling Test(TC): In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.   A series of high and low temperature cycling tests are done on the temperature change at the temperature variation rate of 5~15 degrees per minute, which is not a real simulation of the actual situation. Its purpose is to apply stress to the test piece, accelerate the aging factor of the test piece, so that the test piece may cause damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.   Common ones are: Electrical function of the product The lubricant deteriorates and loses lubrication Loss of mechanical strength, resulting in cracks and cracks The deterioration of the material causes chemical action   Scope of application: Module/system product environment simulation test Module/System Product Strife test PCB/PCBA/ Solder Joint Accelerated Stress Test (ALT/AST)...   Thermal Shock Test(TS): In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.   High and low temperature shock tests under extremely harsh conditions on rapid temperature changes at a temperature variability of 40 degrees per minute are not truly simulated. Its purpose is to apply severe stress to the test piece to accelerate the aging factor of the test piece, so that the test piece may cause potential damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.   Common ones are: Electrical function of the product The product structure is damaged or the strength is reduced Tin cracking of components The deterioration of the material causes chemical action Seal damage   Machine specifications: Temperature range: -60 ° C to +150 ° C Recovery time: < 5 minutes Inside dimension: 370*350*330mm (D×W×H)   Scope of application: PCB reliability acceleration test Accelerated life test of vehicle electric module LED parts accelerated test...   Effects of temperature changes on products: The coating layer of components falls off, the potting materials and sealing compounds crack, even the sealing shell cracks, and the filling materials leak, which causes the electrical performance of components to decline. Products composed of different materials, when the temperature changes, the product is not evenly heated, resulting in product deformation, sealing products cracking, glass or glassware and optics broken; The large temperature difference makes the surface of the product condense or frost at low temperature, evaporates or melts at high temperature, and the result of such repeated action leads to and accelerates the corrosion of the product.   Environmental effects of temperature change: Broken glass and optical equipment. The movable part is stuck or loose. Structure creates separation. Electrical changes. Electrical or mechanical failure due to rapid condensation or freezing. Fracture in a granular or striated manner. Different shrinkage or expansion characteristics of different materials. The component is deformed or broken. Cracks in surface coatings. Air leak in the containment compartment.
    LEER MÁS
  • Cámara de prueba de ciclos de temperatura rápida Lab Companion Cámara de prueba de ciclos de temperatura rápida Lab Companion
    Jan 21, 2024
    Cámara de prueba de ciclos de temperatura rápida Lab CompanionIntroducción de Lab CompanionCon más de 20 años de experiencia, Compañero de laboratorio es un fabricante de cámaras ambientales de clase mundial y un destacado proveedor de sistemas y equipos de prueba llave en mano. Todas nuestras cámaras se basan en la reputación de Lab Companion de larga vida útil y confiabilidad excepcional. Con un alcance de diseño, fabricación y servicio, Lab Companion ha establecido un sistema de gestión de calidad que cumple con la Norma Internacional del Sistema de Calidad ISO 9001:2008. El programa de calibración de equipos de Lab Companion está acreditado según la norma internacional ISO 17025 y la norma nacional estadounidense ANSI/NCSL-Z-540-1 por A2LA. A2LA es miembro de pleno derecho y signatario de la Cooperación Internacional de Acreditación de Laboratorios (ILAC), la Acreditación de Laboratorios de Asia Pacífico (APLAC) y la Cooperación Europea para la Acreditación (EA). Las cámaras de pruebas ambientales de la serie SE de Lab Companion ofrecen un sistema de flujo de aire significativamente mejorado, que proporciona mejores gradientes y mejores tasas de cambio de temperatura del producto. Estas cámaras utilizan el programador/controlador 8800 insignia de Thermotron, que cuenta con una pantalla plana de 12,1” de alta resolución con interfaz de usuario táctil, capacidades ampliadas para realizar gráficos, registrar datos, editar, acceder a ayuda en pantalla y almacenamiento de datos en el disco duro a largo plazo.No solo ofrecemos productos de la más alta calidad, sino que también brindamos soporte continuo diseñado para mantenerlo en funcionamiento mucho después de la venta inicial. Brindamos servicio local directo de fábrica con un extenso inventario de las piezas que pueda necesitar. ActuaciónRango de temperatura: -70°C a +180°CRendimiento: Con una carga de aluminio de 23 kg (IEC60068-3-5), la velocidad de aumento de +85 °C a -40 °C es de 15 ℃/min; la velocidad de enfriamiento de -40 °C a +85 °C también es de 15 ℃/min.Control de temperatura: ± 1°C Temperaturas de bulbo seco desde el punto de control después de la estabilización en el sensor de controlEl rendimiento se basa en una condición ambiental de 75 °F (23,9 °C) y 50 % de humedad relativa.Rendimiento de refrigeración/calefacción basado en la medición en el sensor de control en la corriente de aire de suministroestructuraInteriorAcero inoxidable no magnético Serie 300 con alto contenido de níquelCosturas internas soldadas con heliarco para sellado hermético del liner.Esquinas y uniones diseñadas para permitir la expansión y contracción bajo las temperaturas extremas encontradas.Drenaje de condensado ubicado en el piso del liner y debajo del pleno de acondicionamientoLa base de la cámara está completamente soldada.Aislamiento de fibra de vidrio que no se asienta “Ultra-Lite”Un estante interior ajustable de acero inoxidable es estándarExteriorChapa de acero tratada moldeadaSe proporcionan cubiertas de acceso metálicas para facilitar la apertura de las puertas a los componentes eléctricos.Acabado de laca a base de agua, seca al aire, rociada sobre una superficie limpia e imprimada.Puertas de acceso con bisagras fáciles de levantar para dar servicio al sistema de refrigeraciónUn puerto de acceso de 12,5 cm de diámetro con soldadura interior y tapón aislante extraíble montado en accesorios de pared del lado derecho en puerta con bisagras para fácil acceso.CaracterísticasLa operación de la cámara muestra claramente información útil sobre el tiempo de ejecuciónGraphing Screen ofrece capacidades ampliadas, programación e informes mejoradosEl estado del sistema muestra parámetros cruciales del sistema de refrigeraciónLa entrada de programa facilita la carga, visualización y edición de perfiles.Los asistentes de configuración de pasos rápidos facilitan la entrada al perfilTablas de refrigeración emergentes para una referencia prácticaTherm-Alarm® proporciona protección de alarma de temperatura excesiva o insuficienteLa pantalla de registro de actividad proporciona un historial completo del equipoEl servidor web permite el acceso a Internet al equipo a través de EthernetEl teclado emergente fácil de usar hace que la entrada de datos sea rápida y sencillaIncluye:- Cuatro puertos USB: dos externos y dos internos- Ethernet-RS-232Especificaciones técnicas1-4 canales programables independientementePrecisión de medición: 0,25 % del intervalo típicoEscala de temperatura seleccionable °C o °FPantalla táctil de panel plano en color de 12,1” (30 cm)Resolución: 0,1°C, 0,1%RH, 0,01 para otras aplicaciones linealesReloj en tiempo real incluidoFrecuencia de muestreo: variable de proceso muestreada cada 0,1 segundosBanda Proporcional: Programable 1.0° a 300°Método de control: DigitalIntervalos: IlimitadoResolución de intervalo: 1 segundo a 99 horas, 59 minutos con resolución de 1 segundo-RS-232- Más de 10 años de almacenamiento de datos- Control de temperatura del producto- Tablero de retransmisión de eventosModos de funcionamiento: Automático o ManualAlmacenamiento del programa: ilimitadoBucles de programa:- Hasta 64 bucles por programaLos bucles se pueden repetir hasta 9999 veces.- Se permiten hasta 64 bucles anidados por
    LEER MÁS
  • Condiciones de prueba de confiabilidad del reloj inteligente Condiciones de prueba de confiabilidad del reloj inteligente
    Mar 12, 2024
    Condiciones de prueba de confiabilidad del reloj inteligenteEn la sociedad actual, los estudiantes de primaria e incluso los niños de jardín de infantes tienen un reloj inteligente. Entonces, ¿qué es un reloj inteligente? En el último período de promoción de los relojes deportivos debido al rápido despegue de los teléfonos inteligentes, la mesa inteligente no tiene la intención de proporcionar el mismo efecto PIM que las PDA y los teléfonos inteligentes, y apela a los accesorios asistentes del agente de teléfonos inteligentes, similares a los auriculares Bluetooth. Las ayudas de voz de los teléfonos inteligentes y las mesas inteligentes se convierten en ayudas de información y datos, proporcionando una visualización y operación de información más conveniente y rápida. También hay otros nombres como Smart Accesorio y Android Remote. Posicionado como un asistente del teléfono móvil, la idea es que "la razón por la que el reloj de bolsillo se extinguió es porque es simplemente para mirar la hora, pero también sacar el bolsillo, unos 2-3 segundos, pero el reloj está a menos de 1 segundo, lo cual es más cómodo que el reloj de bolsillo." Y después de la observación, ahora todos sacan un teléfono inteligente y lo abren, solo para confirmar el mensaje, de modo que unas docenas de veces, estas confirmaciones ni siquiera necesitan escribir una respuesta, si las docenas de confirmaciones cambiaron en el reloj, no siempre es necesario. Hay que tirar del desbloqueo de la corredera de la máquina, porque esto requiere tanto tiempo como un reloj de bolsillo. Por tanto, tras convertirse en el asistente del móvil, el mando a distancia, si no coges el móvil para salir, el reloj es inútil además de mostrar la hora, y los auriculares Bluetooth sin móvil, casi chatarra. .¡Combinado con pulsera inteligente para vender mejor!El reloj inteligente desde "más pequeño que una computadora independiente PDA" hasta "ayuda para el control remoto de un teléfono inteligente" parece haber sido un posicionamiento más exitoso, pero en este CES 2014 se puede ver que el posicionamiento en combinación con una pulsera inteligente es mejor. La pulsera inteligente utiliza sensores de aceleración (y giroscopios, sensores magnetorresistivos, etc.) para detectar la velocidad de carrera del usuario, el recuento de pasos, etc., e incluso puede detectar el sueño profundo y proporcionar sugerencias para hacer ejercicio y dormir. Cuando se agrega la pulsera a la pantalla, puede mostrar la hora y la información en el teléfono móvil. Apelar a la información del teléfono móvil, si no hay necesidades de información urgentes, de hecho, solo se considera una opción similar a los auriculares Bluetooth (mensajería, necesidad del conductor), si todos pueden aceptar la velocidad de acceso a la información de deslizamiento, entonces el mercado ser limitado. Sin embargo, además de apelar a la supervisión del registro de ejercicio y sueño, y enfatizar los consejos informativos, en lugar de enfatizar el control remoto del reloj en el teléfono móvil, equivale a un pequeño sacrificio o casi ningún sacrificio para el usuario final, pero aporta un valor de aplicación nuevo e inmediato (deportes, ayuda para dormir), en lugar de repetir completamente el valor de eficacia del teléfono móvil, lo que aumenta aún más el éxito de mercado del reloj inteligente. Después de ajustar constantemente la eficacia, la aplicación y el posicionamiento, e integrarnos con el anillo inteligente, creemos que podemos tener un mercado más alto que en el pasado. Reloj inteligente para personas y funciones:1. Relojes inteligentes para adultosFunciones: llamadas de teléfonos móviles sincrónicas por Bluetooth, enviar y recibir mensajes de texto, monitorear el sueño, monitorear la frecuencia cardíaca, recordatorio de sedentarismo, correr, fotografía remota, reproducción de música, video, brújula y otras funciones, ¡diseñadas para personas con tendencias de moda!2, reloj inteligente para personas mayoresFunciones: posicionamiento GPS ultrapreciso, llamadas familiares, llamadas de emergencia, monitoreo de frecuencia cardíaca, recordatorios de sedentarismo, recordatorios de medicamentos y otras funciones personalizadas para personas mayores, proporcionando un paraguas para los viajes de las personas mayores, traiga este reloj, ¡niegue a perder a las personas mayores!3, reloj inteligente de posicionamiento para niñosFunciones: posicionamiento múltiple, llamada bidireccional, SOS SOS, monitoreo remoto, antipérdida inteligente, seguimiento histórico, cerca electrónica, podómetro, recompensa de amor y otras funciones, para garantizar la seguridad de los niños, brindarles un entorno de crecimiento saludable y seguro. ! Especificaciones del reloj inteligente:IEC 60086-3: Pilas de relojISO 105-A02: Prueba de solidez del color -A02 - Evaluación de escala de grises para decoloraciónISO 105-A03-1993: Ensayos de solidez del color -A03- Evaluación de la escala de grises del teñidoISO 764: relojes antimagnéticos de relojeríaISO 1413: Relojes horológicos a prueba de golpesISO 2281: Relojes relojeros resistentes al aguaISO 11641-1993: Cuero - pruebas de solidez del color - Solidez del color al sudorISO 14368-3: Ensayo de resistencia al impacto del vidrio de mesa.MIL 810G: consideraciones de ingeniería ambiental y pruebas de laboratorioQB/T 1897-1993: Inspección de relojes a prueba de aguaQB/T 1898-1993: Inspección de relojes a prueba de golpesQB/T 1908-1993: Prueba de confiabilidad claveQB/T 1919-2012: Inspección tipográfica de relojes digitales de cuarzo con agujas y cristal líquidoQB/T 2047-2007: Inspección de correas metálicas para relojesGB/T 2537-2001: prueba de solidez del color del cuero solidez del color mediante molienda alternativaQB/T 2540-2002: Inspección de correas de cueroGB/T 6048-1985: reloj electrónico digital de cuarzoGB/T 18761-2007: indicador de pantalla digital electrónicoGB/T 18828-2002: Norma para relojes de buceoGB/T 22778-2008: Inspección tipo cronómetro de cuarzo digital LCDGB/T 22780-2008: Inspección de tipo de relojes de cuarzo LCDGB/T 26716-2011 idt ISO 764-2002: Inspección de relojes antimagnéticosHJ216-2005: reloj Eco-Drive Proyecto piloto de reloj inteligente:Fiabilidad, precisión de medición del período de tiempo, diferencia diaria instantánea, temperatura de funcionamiento, rango de voltaje, coeficiente de temperatura promedio, coeficiente de voltaje, resistencia a la humedad, resistencia a los golpes, rendimiento a prueba de agua, ciclo de reemplazo de la batería, resistencia a la fatiga de las teclas, resistencia a la luz y a la intemperie, rendimiento antiestático Temperatura ambiente rango: -25 ℃ ~ 55 ℃ Temperatura de funcionamiento: -5 ~ 50 ℃/80 % R.H. (Requisitos: cada función y pantalla de cristal líquido deben estar completas y normales) Prueba de temperatura de trabajo alta y baja: 50 ± 1 ℃/24 h → RT /1h→-5±1℃ Condiciones de prueba de cambio de temperatura: (IEC60068-2) Temperatura alta: 30, 40, 55℃ Temperatura baja: 5, -5, -10, -25℃ Nb tiempo de residencia (incluido el tiempo de subida y enfriamiento ) : 10 min, 30 min, 1 h Nb variabilidad de temperatura: 3 ± 0,6 ℃/min, 5 ± 1 ℃/min. Prueba de calor húmedo:1,40 ± 1 ℃/85 ~ 95% HR/24 h2,8 ± 1 ℃/85 ~ 95 % HR/4 h Prueba de humedad en almacenamiento en almacén:40℃/20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%49℃/10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%Cada paso 37 horas Prueba de simulación de cambio de temperatura del transporte aéreo:Especificación: IEC60721.2 Condiciones ambientales de aplicación de productos eléctricos y electrónicos - norma nacional de transporteCategoría: 2K5 (Aplicable al rango climático de transporte interno sin ventilación y sin presión a nivel mundial)Rango de temperatura: -65 ℃ ← → 85 ℃RAMPA: 5℃/min Prueba de simulación de cambio de temperatura del transporte aéreo:Especificación: IEC60721.6 Condiciones ambientales de aplicación de productos eléctricos y electrónicos - MarinoCategoría: 6K5 (sujeto a clima frío, instalado en partes protegidas contra la intemperie pero sin calefacción)Rango de temperatura: -25 ℃ ← → 40 ℃RAMPA: 3℃/min Prueba de resistencia al cambio de temperatura del agua:5 min en agua a 40 ℃ → 5 min en agua a 20 ℃, 5 min en agua a 40 ℃, profundidad de agua de 10 cm Prueba de resistencia a la presión del agua:Remoje el reloj en un recipiente con agua, aplique una sobrepresión de 2*10^5Pa [o 20 m de profundidad de agua] en 1 minuto, manténgala durante 10 minutos y luego, en 1 minuto, la presión alcanzará la presión estándar del entorno. Prueba de resistencia al agua salada:Ponga el reloj a prueba en una solución de cloruro de sodio de 30 g/l a 18 °C ~ 25 °C durante 24 h. Verifique que la carcasa y los accesorios después de la prueba no deben tener cambios significativos; Verifique las piezas móviles, especialmente el anillo frontal giratorio, debe poder mantener su funcionamiento normal. Prueba de confiabilidad submarina:El reloj bajo prueba se sumerge en 30 cm ± 2 cm de agua y se coloca a una temperatura de 18 ° C ~ 25 ° C durante 50 h, y todos los dispositivos mecánicos aún deberían funcionar normalmente. Durante la prueba, los dispositivos mecánicos que deban funcionar en agua, como los dispositivos de preajuste de la hora y los interruptores de luz, deberían poder funcionar normalmente; Realice la prueba de condensación, la superficie interior del vidrio de la mesa no deberá presentar niebla de condensación y la función mecánica no deberá dañarse. Prueba de resistencia al choque térmico:Sumerja el reloj en agua a diferentes temperaturas con una profundidad de 30 cm ± 2 cm sucesivamente: colóquelo en agua a 40 ° C ± 2 ° C durante 10 minutos; Poner en agua a 5 ℃ ± 2 ℃ durante 10 minutos; Poner en agua a 40 °C ± 2 °C durante 10 minutos (el reloj no se sacará del agua y se volverá a sumergir en agua a otra temperatura durante más de 1 minuto). Realice la prueba de condensación; la superficie interior del vidrio de la mesa no deberá presentar niebla de condensación y deberá funcionar normalmente. Prueba de resistencia química:Especificaciones de citación: ASTM F 1598-95, ASTM D 1308-87, ASTM D 1308-02Ingredientes: Productos químicos domésticos (suciedad, polvo, aceite, vapores y mantequilla de maní, cosméticos, crema de manos... Etc.)Tiempo: 24 horas Resistencia a la corrosión por prueba de sudor artificial:QB/T 1901.2-2006 "Cubiertas de carcasa y sus accesorios de aleación de oro - Parte 2 Prueba de pureza, espesor, resistencia a la corrosión y adhesión"Principio de prueba: El sudor artificial se utiliza para entrar en contacto con el objeto a alta temperatura (40 ± 2) ℃, y después de un largo tiempo (no menos de 24 horas), se observa la condición de su superficie para determinar su resistencia a la corrosión por sudor. Prueba de vibración:Aceleración (19,6 m/s^2), frecuencia 30 Hz ~ 120 Hz, ciclo de escaneo 1 minRequisitos: Las funciones y la pantalla LCD deben estar completas y normales, y las piezas no deben estar sueltas ni caerse. Prueba de caída:Madera dura litográfica de caída de 1 m, una vez del lado del reloj, una vez del lado del vidrioRequisitos: Funcionamiento normal después de cada impacto, sin daños en la apariencia [vidrio roto, pie de la caja doblado, componente de la caja doblado, caja rota, botón dañado] Prueba de impacto:Material de la almohadilla del cono de impacto: politetrafluoroetileno, velocidad de impacto 4,43 m/s, altura de impacto 1 m Prueba de balanceo de brazos:2 a 10Hz
    LEER MÁS
  • Prueba de convección natural (prueba de temperatura sin circulación de viento) y especificación Prueba de convección natural (prueba de temperatura sin circulación de viento) y especificación
    Oct 18, 2024
    Prueba de convección natural (prueba de temperatura sin circulación de viento) y especificaciónLos equipos audiovisuales de entretenimiento para el hogar y la electrónica automotriz son uno de los productos clave de muchos fabricantes, y el producto en el proceso de desarrollo debe simular la adaptabilidad del producto a la temperatura y las características electrónicas a diferentes temperaturas. Sin embargo, cuando se utiliza el horno general o la cámara de prueba de temperatura y humedad constantes para simular la temperatura ambiente, tanto el horno como la cámara de prueba de temperatura y humedad constantes tienen un área de prueba equipada con un ventilador de circulación, por lo que habrá problemas de velocidad del viento en el área de prueba. Durante la prueba, la uniformidad de la temperatura se equilibra haciendo girar el ventilador de circulación. Aunque la uniformidad de la temperatura del área de prueba se puede lograr mediante la circulación del viento, el aire circulante también eliminará el calor del producto a probar, lo que será significativamente inconsistente con el producto real en un entorno de uso sin viento. (como la sala de estar, interior). Debido a la relación de circulación del viento, la diferencia de temperatura del producto a probar será de casi 10 ° C. Para simular el uso real de las condiciones ambientales, muchas personas malinterpretarán que solo la máquina de prueba puede producir temperatura (como : horno, cámara de prueba de temperatura y humedad constantes) pueden realizar pruebas de convección natural, de hecho, este no es el caso. En la especificación, existen requisitos especiales para la velocidad del viento y se requiere un entorno de prueba sin velocidad del viento. A través del equipo de prueba de convección natural (prueba sin circulación forzada de viento), se genera la temperatura ambiente sin ventilador (prueba de convección natural) y luego se lleva a cabo la prueba de integración de la prueba para detectar la temperatura del producto bajo prueba. Esta solución se puede aplicar a la prueba de temperatura ambiente real de productos electrónicos relacionados con el hogar o espacios confinados (como: televisores LCD grandes, cabinas de automóviles, dispositivos electrónicos de automóviles, computadoras portátiles, computadoras de escritorio, consolas de juegos, estéreo... Etc.).La diferencia del entorno de prueba con o sin circulación de viento para la prueba del producto a probar:Si el producto a probar no está energizado, el producto a probar no se calentará solo, su fuente de calor solo absorbe el calor del aire en el horno de prueba, y si el producto a probar está energizado y calentado, la circulación del viento en el El horno de prueba eliminará el calor del producto a probar. Cada aumento de 1 metro en la velocidad del viento, su calor se reducirá aproximadamente un 10%. Supongamos que se simulan las características de temperatura de los productos electrónicos en un ambiente interior sin aire acondicionado, si se utiliza un horno o una cámara de prueba de temperatura y humedad constantes para simular 35 ° C, aunque el ambiente en el área de prueba se puede controlar dentro de los 35 ° C. A través del calentamiento eléctrico y la congelación, la circulación del viento del horno y la cámara de prueba de temperatura y humedad constantes eliminarán el calor del producto a probar, haciendo que la temperatura real del producto a probar sea inferior a la temperatura en el estado real. sin viento. Por lo tanto, es necesario utilizar una máquina de prueba de convección natural sin velocidad del viento para simular eficazmente el entorno real sin viento (como: interior, cabina de un automóvil que no arranca, chasis de instrumentos, caja impermeable al aire libre... Dicho entorno).Ambiente interior sin circulación de viento ni irradiación de calor radiante solar:A través del probador de convección natural, simule el uso real del cliente del entorno de convección de aire acondicionado real, el análisis de puntos calientes y las características de disipación de calor de la evaluación del producto, como el televisor LCD en la foto, no solo para considerar su propia disipación de calor, sino también Para evaluar el impacto de la radiación térmica fuera de la ventana, la radiación térmica del producto puede producir calor radiante adicional por encima de 35 °C.Tabla comparativa de velocidad del viento y producto IC a probar:Cuando la velocidad del viento ambiental es más rápida, la temperatura de la superficie del IC también eliminará el calor de la superficie del IC debido al ciclo del viento, lo que resultará en una velocidad del viento más rápida y una temperatura más baja; cuando la velocidad del viento es 0, la temperatura es de 100 ℃, pero cuando la velocidad del viento alcanza los 5 m/s, la temperatura de la superficie del IC ha estado por debajo de 80 ℃.Prueba de circulación de aire no forzada:De acuerdo con los requisitos de especificación de IEC60068-2-2, en el proceso de prueba de alta temperatura, es necesario llevar a cabo las condiciones de prueba sin circulación de aire forzada, el proceso de prueba debe mantenerse bajo el componente de circulación libre de viento y el La prueba de alta temperatura se lleva a cabo en el horno de prueba, por lo que la prueba no se puede realizar a través de la cámara u horno de prueba de temperatura y humedad constantes, y el probador de convección natural se puede usar para simular las condiciones del aire libre.Descripción de las condiciones de prueba:Especificación de prueba para circulación de aire no forzada: IEC-68-2-2, GB2423.2, GB2423.2-89 3.3.1Prueba de circulación de aire no forzada: La condición de prueba de circulación de aire no forzada puede simular bien la condición de aire libre.GB2423.2-89 3.1.1:Cuando se mide en condiciones de aire libre, cuando la temperatura de la muestra de prueba es estable, la temperatura del punto más caliente de la superficie es más de 5 ℃ más alta que la temperatura del dispositivo grande circundante, es una muestra de prueba de disipación de calor. de lo contrario, se trata de una muestra de prueba sin disipación de calor.GB2423.2-8 10 (Prueba de gradiente de temperatura de la muestra de prueba de disipación de calor):Se proporciona un procedimiento de prueba estándar para determinar la adaptabilidad de los productos electrónicos térmicos (incluidos componentes, nivel de equipo y otros productos) para su uso a altas temperaturas.Requisitos de prueba:a. Máquina de ensayo sin circulación de aire forzada (equipada con ventilador o soplador)b. Muestra de prueba únicado. La velocidad de calentamiento no es superior a 1 ℃/min.d. Una vez que la temperatura de la muestra de prueba alcanza la estabilidad, la muestra de prueba se energiza o se realiza la carga eléctrica doméstica para detectar el rendimiento eléctrico.Características de la cámara de prueba de convección natural:1. Puede evaluar la producción de calor del producto que se va a probar después de la alimentación, para proporcionar la mejor uniformidad de distribución;2. Combinado con un recolector de datos digitales, mida de manera efectiva la información de temperatura relevante del producto que se va a probar para un análisis multipista sincrónico;3. Registre la información de más de 20 rieles (registro síncrono de la distribución de temperatura dentro del horno de prueba, temperatura multipista del producto a probar, temperatura promedio... Etc.).4. El controlador puede mostrar directamente el valor de registro de temperatura multipista y la curva de registro; Las curvas de prueba multipista se pueden almacenar en una unidad USB a través del controlador;5. El software de análisis de curvas puede mostrar intuitivamente la curva de temperatura de múltiples pistas y generar informes EXCEL, y el controlador tiene tres tipos de visualización [inglés complejo];6. Selección de sensor de temperatura de termopar de varios tipos (B, E, J, K, N, R, S, T);7. Escalable para aumentar la velocidad de calentamiento y controlar la planificación de la estabilidad.
    LEER MÁS
  • Detección de estrés cíclico de temperatura (2) Detección de estrés cíclico de temperatura (2)
    Oct 14, 2024
    Detección de estrés cíclico de temperatura (2)Introducción de parámetros de tensión para la detección de tensión cíclica de temperatura:Los parámetros de tensión de la detección de tensión cíclica de temperatura incluyen principalmente lo siguiente: rango extremo de temperatura alta y baja, tiempo de permanencia, variabilidad de temperatura, número de cicloRango extremo de temperatura alta y baja: cuanto mayor sea el rango de temperatura extrema alta y baja, menos ciclos se requieren, menor será el costo, pero no puede exceder el producto que puede soportar el límite, no causa un nuevo principio de falla, la diferencia entre el Los límites superior e inferior de cambio de temperatura no son inferiores a 88°C, el rango típico de cambio es de -54°C a 55°C.Tiempo de permanencia: Además, el tiempo de permanencia no puede ser demasiado corto, de lo contrario será demasiado tarde para que el producto bajo prueba produzca cambios de tensión de expansión y contracción térmica, en cuanto al tiempo de permanencia, el tiempo de permanencia de diferentes productos es diferente, usted Puede consultar los requisitos de especificación relevantes.Número de ciclos: En cuanto al número de ciclos de detección de tensión cíclica de temperatura, también se determina considerando las características del producto, la complejidad, los límites superior e inferior de temperatura y la tasa de detección, y el número de detección no debe excederse, de lo contrario causará daño innecesario al producto y no puede mejorar la tasa de detección. El número de ciclos de temperatura varía de 1 a 10 ciclos [cribado ordinario, cribado primario] a 20 a 60 ciclos [cribado de precisión, cribado secundario], para la eliminación de los defectos de mano de obra más probables, se pueden eliminar eficazmente entre 6 y 10 ciclos. , además de la efectividad del ciclo de temperatura, depende principalmente de la variación de temperatura de la superficie del producto, más que de la variación de temperatura dentro de la caja de prueba.Hay siete parámetros principales que influyen en el ciclo de temperatura:(1) Rango de temperatura(2) Número de ciclos(3) Tasa de temperatura de Chang(4) Tiempo de permanencia(5) Velocidades del flujo de aire(6) Uniformidad del estrés(7) Prueba de funcionamiento o no (Condición de funcionamiento del producto)Clasificación de fatiga por detección de estrés:La clasificación general de la investigación sobre la fatiga se puede dividir en fatiga de ciclo alto, fatiga de ciclo bajo y crecimiento de grietas por fatiga. En el aspecto de Fatiga de bajo ciclo, se puede subdividir en Fatiga Térmica y Fatiga Isotérmica.Acrónimos de detección de estrés:ESS: Detección de estrés ambientalFBT: Probador de placa de funciónICA: analizador de circuitosTIC: probador de circuitosLBS: probador de cortocircuito de placa de cargaMTBF: tiempo medio entre fallosTiempo de los ciclos de temperatura:a.MIL-STD-2164(GJB 1302-90): En la prueba de eliminación de defectos, el número de ciclos de temperatura es 10, 12 veces, y en la detección sin problemas es 10 ~ 20 veces o 12 ~ 24 veces. Para eliminar los defectos de mano de obra más probables, se necesitan entre 6 y 10 ciclos para eliminarlos de manera efectiva. 1 ~ 10 ciclos [cribado general, cribado primario], 20 ~ 60 ciclos [cribado de precisión, cribado secundario].B.od-hdbk-344 (GJB/DZ34) El equipo de detección inicial y el nivel de unidad utilizan de 10 a 20 bucles (normalmente ≧ 10), el nivel de componente utiliza de 20 a 40 bucles (normalmente ≧ 25).Variabilidad de temperatura:a.MIL-STD-2164(GJB1032) establece claramente: [Tasa de cambio de temperatura del ciclo de temperatura 5 ℃/min]B.od-hdbk-344 (GJB/DZ34) Nivel de componente 15 °C /min, sistema 5 °C /mindo. La detección de tensión cíclica de temperatura generalmente no se especifica como variabilidad de temperatura, y su tasa de variación de grados comúnmente utilizada suele ser de 5 °C/min.
    LEER MÁS
  • Prueba combinada IEC-60068-2 de condensación y temperatura y humedad Prueba combinada IEC-60068-2 de condensación y temperatura y humedad
    Oct 14, 2024
    Prueba combinada IEC-60068-2 de condensación y temperatura y humedadDiferencia de las especificaciones de prueba de calor húmedo IEC60068-2En la especificación IEC60068-2, hay un total de cinco tipos de pruebas de calor húmedo, además de las pruebas comunes de 85 ℃/85 % H.R., 40 ℃/93 % H.R. Además de la temperatura alta y la humedad alta de punto fijo, hay dos pruebas especiales más [IEC60068-2-30, IEC60068-2-38], estas dos alternan el ciclo húmedo y húmedo y el ciclo combinado de temperatura y humedad, por lo que la prueba El proceso cambiará la temperatura y la humedad, e incluso múltiples grupos de enlaces y ciclos de programas, aplicados en semiconductores, piezas, equipos, etc. de circuitos integrados. Para simular el fenómeno de condensación exterior, evalúe la capacidad del material para prevenir la difusión de agua y gas y acelerar la producción del producto. tolerancia al deterioro, las cinco especificaciones se organizaron en una tabla comparativa de las diferencias en las especificaciones de la prueba húmeda y térmica, y se explicaron en detalle los puntos de prueba para la prueba de ciclo combinado húmedo y térmico, y las condiciones y puntos de prueba de GJB en Se complementaron las pruebas de humedad y calor.Prueba de ciclo de calor húmedo alterno IEC60068-2-30Esta prueba utiliza la técnica de prueba de mantener la humedad y la temperatura alternando para hacer que la humedad penetre en la muestra y cause condensación (condensación) en la superficie del producto a probar, a fin de confirmar la adaptabilidad del componente, equipo u otros productos en uso, transporte y almacenamiento bajo la combinación de alta humedad y cambios cíclicos de temperatura y humedad. Esta especificación también es adecuada para muestras de prueba grandes. Si el equipo y el proceso de prueba necesitan mantener los componentes de calefacción eléctrica para esta prueba, el efecto será mejor que IEC60068-2-38, la alta temperatura utilizada en esta prueba tiene dos (40 ° C, 55 ° C), la 40 ° C cumple con la mayor parte de las condiciones ambientales de alta temperatura del mundo, mientras que 55 ° C cumple con todas las condiciones ambientales de alta temperatura del mundo. Las condiciones de prueba también se dividen en [ciclo 1, ciclo 2], en términos de severidad, [Ciclo 1] es mayor que [Ciclo 2].Adecuado para productos secundarios: componentes, equipos, diversos tipos de productos a probar.Entorno de prueba: la combinación de cambios cíclicos de alta humedad y temperatura produce condensación, y se pueden probar tres tipos de entornos [uso, almacenamiento, transporte ([el embalaje es opcional)]Prueba de estrés: la respiración provoca la invasión del vapor de aguaSi hay energía disponible: SíNo apto para: piezas demasiado ligeras y demasiado pequeñasProceso de prueba e inspección y observación posterior a la prueba: verifique los cambios eléctricos después de la humedad [no retire la inspección intermedia]Condiciones de prueba: Humedad: 95% H.R. [Cambio de temperatura después de un mantenimiento de humedad alta] (temperatura baja 25 ± 3 ℃ ← → temperatura alta 40 ℃ o 55 ℃)Velocidad de elevación y enfriamiento: calentamiento (0,14 ℃/min), enfriamiento (0,08 ~ 0,16 ℃/min)Ciclo 1: Cuando la absorción y los efectos respiratorios son características importantes, la muestra de prueba es más compleja [humedad no inferior al 90% H.R.]Ciclo 2: En el caso de efectos respiratorios y de absorción menos obvios, la muestra de prueba es más simple [la humedad no es inferior al 80% H.R.]Tabla de comparación de diferencias de especificación de prueba de calor húmedo IEC60068-2Para productos de piezas de tipo componente, se utiliza un método de prueba combinado para acelerar la confirmación de la resistencia de la muestra de prueba a la degradación en condiciones de alta temperatura, alta humedad y baja temperatura. Este método de prueba es diferente de los defectos del producto causados por la respiración [rocío, absorción de humedad] de IEC60068-2-30. La severidad de esta prueba es mayor que la de otras pruebas de ciclo de calor húmedo, porque hay más cambios de temperatura y [respiración] durante la prueba, el rango de temperatura del ciclo es mayor [de 55 ℃ a 65 ℃] y la tasa de cambio de temperatura del ciclo de temperatura es más rápido [aumento de temperatura: 0,14 °C/min se convierte en 0,38 °C/min, 0,08 °C/min se convierte en 1,16 °C/min], además, a diferencia del ciclo general de calor húmedo, el ciclo de baja temperatura Se agrega una condición de -10 ° C para acelerar la frecuencia respiratoria y hacer que el agua condensada en el espacio del sustituto se congele, que es la característica de esta especificación de prueba. El proceso de prueba permite la prueba de potencia y la prueba de potencia de carga aplicada, pero no puede afectar las condiciones de la prueba (fluctuación de temperatura y humedad, velocidad de aumento y enfriamiento) debido al calentamiento del producto secundario después de la energía. Debido al cambio de temperatura y humedad durante el proceso de prueba, no puede haber gotas de agua condensada en la parte superior de la cámara de prueba hacia el producto secundario.Adecuado para productos secundarios: componentes, sellado de componentes metálicos, sellado de extremos de plomo.Entorno de prueba: combinación de condiciones de alta temperatura, alta humedad y baja temperaturaPrueba de estrés: respiración acelerada + agua congeladaSi se puede encender: se puede encender y carga eléctrica externa (no puede afectar las condiciones de la cámara de prueba debido al calentamiento eléctrico)No aplicable: No puede reemplazar el calor húmedo y el calor húmedo alterno, esta prueba se utiliza para producir defectos diferentes a la respiración.Proceso de prueba e inspección y observación posterior a la prueba: verifique los cambios eléctricos después de la humedad [verifique en condiciones de alta humedad y retírelo después de la prueba]Condiciones de prueba: ciclo de calor húmedo (25 por favor - 65 + 2 ℃ / 93 + / - 3% R.H.) por favor - ciclo de baja temperatura (25 por favor - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5ciclo = 10 ciclosVelocidad de elevación y enfriamiento: calentamiento (0,38 ℃/min), enfriamiento (1,16 ℃/min)Ciclo de calor y humedad (25←→65±2℃/93±3%R.H.)Ciclo de baja temperatura (25←→65±2℃/93±3%H.R. →-10±2℃)Prueba de calor húmedo GJB150-09Instrucciones: La prueba de humedad y calor de GJB150-09 es para confirmar la capacidad del equipo para resistir la influencia de una atmósfera cálida y húmeda, adecuada para equipos almacenados y utilizados en ambientes cálidos y húmedos, equipos propensos a alta humedad o equipos que pueden tienen problemas potenciales relacionados con el calor y la humedad. Las ubicaciones cálidas y húmedas pueden ocurrir durante todo el año en los trópicos, estacionalmente en latitudes medias y en equipos sujetos a cambios combinados de presión, temperatura y humedad, con especial énfasis en 60°C/95%H.R. Esta alta temperatura y humedad no ocurre en la naturaleza, ni simula el efecto de humedad y calor después de la radiación solar, pero puede encontrar las partes del equipo con potenciales problemas, pero no puede reproducir el complejo ambiente de temperatura y humedad, evalúe el Efecto a largo plazo y no puede reproducir el impacto de la humedad relacionado con el ambiente de baja humedad.Equipo relevante para pruebas de ciclo combinado de condensación, congelación húmeda y calor húmedo: cámara de prueba de temperatura y humedad constantes
    LEER MÁS
  • Propósito de la prueba de choque de temperatura Propósito de la prueba de choque de temperatura
    Oct 11, 2024
    Propósito de la prueba de choque de temperatura Prueba ambiental de confiabilidad Además de las altas temperaturas, bajas temperaturas, altas temperaturas y alta humedad, ciclo combinado de temperatura y humedad, el choque de temperatura (choque de frío y calor) también es un proyecto de prueba común, pruebas de choque de temperatura (pruebas de choque térmico, pruebas de choque de temperatura , denominado: TST), el propósito de la prueba de choque de temperatura es descubrir los defectos de diseño y proceso del producto a través de cambios severos de temperatura que exceden el ambiente natural [variabilidad de temperatura superior a 20 ℃ / min, e incluso hasta a 30 ~ 40 ℃/min], pero a menudo hay una situación en la que el ciclo de temperatura se confunde con el choque de temperatura. "Ciclo de temperatura" significa que en el proceso de cambio de temperatura alta y baja, se especifica y controla la tasa de cambio de temperatura; La tasa de cambio de temperatura del "choque de temperatura" (choque de frío y calor) no está especificada (tiempo de rampa), requiere principalmente tiempo de recuperación; de acuerdo con la especificación IEC, existen tres tipos de métodos de prueba de ciclo de temperatura [Na, Nb, NC] . El choque térmico es uno de los tres elementos de la prueba [Na] [cambio rápido de temperatura con un tiempo de conversión específico; medio: aire], los principales parámetros del choque de temperatura (choque térmico) son: Condiciones de alta y baja temperatura, tiempo de residencia, tiempo de retorno, número de ciclos, en condiciones de alta y baja temperatura y tiempo de residencia se basará la nueva especificación actual de la temperatura de la superficie del producto de prueba, en lugar de la temperatura del aire en el área de prueba del equipo de prueba. Cámara de prueba de choque térmico: Se utiliza para probar la estructura del material o el material compuesto, en un instante bajo un ambiente continuo de temperatura extremadamente alta y temperatura extremadamente baja, el grado de tolerancia, para probar los cambios químicos o daños físicos causados por la expansión y contracción térmica en En el menor tiempo, los objetos aplicables incluyen metal, plástico, caucho, electrónica... Dichos materiales pueden utilizarse como base o referencia para la mejora de sus productos. El proceso de prueba de frío y choque térmico (choque de temperatura) puede identificar los siguientes defectos del producto: Diferente coeficiente de dilatación provocado por el decapado de la junta. El agua entra después del agrietamiento con diferente coeficiente de expansión. Prueba acelerada de corrosión y cortocircuito por infiltración de agua. Según la norma internacional IEC, las siguientes condiciones son cambios de temperatura comunes: 1. Cuando el equipo se transfiere de un ambiente interior cálido a un ambiente exterior frío, o viceversa 2. Cuando el equipo se enfría repentinamente por lluvia o agua fría 3. Instalado en el equipo aerotransportado exterior (como: automóvil, 5G, sistema de monitoreo exterior, energía solar) 4. En determinadas condiciones de transporte [automóvil, barco, aire] y almacenamiento [almacén sin aire acondicionado] El impacto de la temperatura se puede dividir en dos tipos: impacto de dos cajas e impacto de tres cajas: Instrucciones: El impacto de la temperatura es común [alta temperatura → baja temperatura, baja temperatura → alta temperatura], esta forma también se llama [impacto de dos cajas], otro llamado [impacto de tres cajas], el proceso es [alta temperatura → temperatura normal → baja temperatura, baja temperatura → temperatura normal → temperatura alta], insertado entre la temperatura alta y la temperatura baja, para evitar agregar un amortiguador entre las dos temperaturas extremas. Si observa las especificaciones y las condiciones de prueba, generalmente hay una condición de temperatura normal, la temperatura alta y baja será extremadamente alta y muy baja, en las especificaciones militares y las regulaciones del vehículo verá que hay una condición de impacto de temperatura normal. Condiciones de prueba de choque de temperatura IEC: Alta temperatura: 30, 40, 55, 70, 85, 100, 125, 155 ℃ Baja temperatura: 5, -5, -10, -25, -40, -55, -65 ℃ Tiempo de residencia: 10 min, 30 min, 1 h, 2 h, 3 h (si no se especifica, 3 h) Descripción del tiempo de residencia del choque de temperatura: El tiempo de permanencia del choque de temperatura, además de los requisitos de la especificación, dependerá del peso del producto de prueba y de la temperatura de la superficie del producto de prueba. Las especificaciones del tiempo de residencia del choque térmico según peso son: GJB360A-96-107, MIL-202F-107, EIAJ ED4701/100, JASO-D001... Esperemos. El tiempo de residencia del choque térmico se basa en las especificaciones de control de temperatura de la superficie: MIL-STD-883K, MIL-STD-202H (aire sobre el objeto de prueba) Requisitos MIL883K-2016 para la especificación [choque de temperatura]: 1. Después de que la temperatura del aire alcance el valor establecido, la superficie del producto de prueba debe llegar en 16 minutos (el tiempo de residencia no es inferior a 10 minutos). 2. El impacto de las altas y bajas temperaturas supera el valor establecido, pero no supera los 10 ℃. Medidas de seguimiento de la prueba de choque térmico IEC Motivo: Es mejor considerar el método de prueba de temperatura IEC como parte de una serie de pruebas, porque algunas fallas pueden no ser evidentes inmediatamente después de completar el método de prueba. Elementos de prueba de seguimiento: Prueba de estanqueidad IEC60068-2-17 IEC60068-2-6 Vibración sinusoidal IEC60068-2-78 Calor húmedo constante IEC60068-2-30 Ciclo de temperatura caliente y húmeda Acabado de condiciones de prueba de impacto de temperatura de bigote de estaño: 1. - 55 (+ 0 / -) 10 ℃ por favor - 85 (+ / - 0) 10 ℃, 20 min / 1 ciclo (500 ciclos verifique nuevamente) 1000 ciclos, 1500 ciclos, 2000 ciclos, 3000 ciclos 2. 85(±5)℃←→-40(+5/-15)℃, 20min/1ciclo, 500ciclos 3.-35±5℃←→125±5℃, permanecer durante 7 minutos, 500±4ciclos 4. - 55 (+ 0 / -) 10 ℃ por favor - 80 (+ / - 0) 10 ℃, 7 min en residencia, 20 min / 1 ciclo, 1000 ciclos Características del producto de la máquina de prueba de choque térmico: Frecuencia de descongelación: descongelación cada 600 ciclos [Condición de prueba: +150 ℃ ~ -55 ℃] Función de ajuste de carga: el sistema puede ajustarse automáticamente según la carga del producto a probar, sin configuración manual Carga de peso elevado: antes de que el equipo salga de fábrica, utilice IC de aluminio (7,5 kg) para la simulación de carga para confirmar que el equipo puede satisfacer la demanda. Ubicación del sensor de choque de temperatura: Se puede seleccionar la salida de aire y la salida de aire de retorno en el área de prueba o se pueden instalar ambas, lo que cumple con la especificación de prueba MIL-STD. Además de cumplir con los requisitos de la especificación, también se acerca más al efecto de impacto del producto de prueba durante la prueba, lo que reduce la incertidumbre de la prueba y la uniformidad de la distribución.
    LEER MÁS
  • Prueba de rotura transitoria del ciclo de temperatura de la placa VMR Prueba de rotura transitoria del ciclo de temperatura de la placa VMR
    Oct 11, 2024
    Prueba de rotura transitoria del ciclo de temperatura de la placa VMR La prueba del ciclo de temperatura es uno de los métodos más utilizados para la prueba de confiabilidad y vida útil de materiales de soldadura sin plomo y piezas SMD. Evalúa las piezas adhesivas y las uniones de soldadura en la superficie de SMD, y causa deformación plástica y fatiga mecánica de los materiales de las uniones de soldadura bajo el efecto de fatiga del ciclo de temperatura fría y caliente con variabilidad de temperatura controlada, para comprender los peligros potenciales y los factores de falla. de uniones de soldadura y SMD. El diagrama de cadena tipo margarita está conectado entre las piezas y las uniones de soldadura. El proceso de prueba detecta el encendido y apagado entre líneas, piezas y uniones de soldadura a través del sistema de medición de rotura instantánea de alta velocidad, que satisface la demanda de pruebas de confiabilidad de conexiones eléctricas para evaluar si las uniones de soldadura, bolas de estaño y las piezas fallan. Esta prueba no es realmente simulada. Su propósito es aplicar una tensión severa y acelerar el factor de envejecimiento en el objeto que se va a probar para confirmar si el producto está diseñado o fabricado correctamente y luego evaluar la vida útil de la fatiga térmica de las uniones de soldadura de los componentes. La prueba de confiabilidad de la conexión eléctrica de ruptura instantánea de alta velocidad se ha convertido en un eslabón clave para garantizar el funcionamiento normal del sistema electrónico y evitar la falla de la conexión eléctrica causada por la falla del sistema inmaduro. Los cambios de resistencia durante un corto período de tiempo se observaron bajo cambios acelerados de temperatura y pruebas de vibración. Objetivo: 1. Asegurar que los productos diseñados, fabricados y ensamblados cumplan con los requisitos predeterminados. 2. Relajación de la tensión de fluencia de la junta de soldadura y falla por fractura SMD causada por la diferencia de expansión térmica 3. La temperatura máxima de prueba del ciclo de temperatura debe ser 25 ℃ menor que la temperatura Tg del material de PCB, para evitar más de un mecanismo de daño del producto de prueba sustituto. 4. La variabilidad de temperatura a 20 ℃/min es un ciclo de temperatura, y la variabilidad de temperatura por encima de 20 ℃/min es un choque de temperatura 5. El intervalo de medición dinámica de la junta de soldadura no supera 1 min. 6. El tiempo de residencia a alta y baja temperatura para la determinación de fallas debe medirse en 5 golpes. Requisitos: 1. El tiempo de temperatura total del producto de prueba está dentro del rango de la temperatura máxima nominal y la temperatura mínima, y la duración del tiempo de residencia es muy importante para la prueba acelerada, porque el tiempo de residencia no es suficiente durante la prueba acelerada. , lo que hará que el proceso de fluencia sea incompleto 2. La temperatura residente debe ser superior a la temperatura Tmax e inferior a la temperatura Tmin Consulte la lista de especificaciones: IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117, SJR-01
    LEER MÁS
  • Inversor: prueba de confiabilidad Inversor: prueba de confiabilidad
    Oct 11, 2024
    Inversor: prueba de confiabilidad Prueba de confiabilidad del inversor, también conocida como convertidor de voltaje, su función es convertir bajo voltaje de CC en alto voltaje de CA, algunos equipos electrónicos deben funcionar con energía de CA, pero nosotros proporcionamos energía de CC, en este momento debe usar el inversor, directo corriente en corriente alterna para accionar las piezas electrónicas. Prueba de confiabilidad del inversor, también conocida como convertidor de voltaje, su función es convertir bajo voltaje de CC en alto voltaje de CA, algunos equipos electrónicos deben funcionar con energía de CA, pero nosotros proporcionamos energía de CC, en este momento debe usar el inversor, directo corriente en corriente alterna para accionar las piezas electrónicas. Condiciones de prueba relevantes: Artículo temperatura tiempo otro Prueba inicial a temperatura normal. 25℃ TIEMPO≥2 horas - Prueba inicial de baja temperatura 0 ℃ o -5 °C TIEMPO≥2 horas - Prueba inicial de alta temperatura 60℃ TIEMPO≥2 horas - Prueba de alta temperatura y alta humedad. 40 ℃/95% HR 240 horas - Prueba de almacenamiento a alta temperatura 70 ℃ TIEMPO≥96 horas o 240 horas - Prueba de almacenamiento a baja temperatura -1 -20°C TIEMPO≥96 horas - Prueba de almacenamiento a baja temperatura -2 -40℃ 240 horas - Prueba de almacenamiento a alta temperatura y alta humedad. 40 ℃/90% HR TIEMPO≥96 horas - Prueba de ciclo de temperatura -20 ℃ ~ 70 ℃ 5 ciclo Temperatura ambiente ↓-20 ℃(4 horas)↓ Temperatura ambiente (90%RH.4 horas)↓70°C(4 horas)↓ Temperatura ambiente (4 horas) Prueba de carga de alta temperatura 55℃ carga equivalente, 1.000 horas - prueba de vida 40°C MTBF≥40000 horas - prueba de encendido/apagado (ciclo de encendido) - - 1 min: encendido, 1 min: apagado, 5000 ciclos usando carga equivalente Prueba de vibración - - Aceleración 3q, frecuencia 10~55HZ, X, Y, Z tres direcciones 10 minutos cada una, un total de 30 minutos Prueba de impacto - - Aceleración de 80 g, 10 ms cada vez, tres veces en las direcciones X, Y, Z Nota 1: El módulo probado debe colocarse a temperatura normal (15~35° C, 45~65%RH) durante una hora antes de realizar la prueba. Equipo aplicable: 1. Cámara de prueba de alta y baja temperatura 2. Cámara de prueba de alta temperatura y alta humedad 3. Cámara de prueba de ciclo de temperatura rápida                
    LEER MÁS
  • Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticas Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticas
    Sep 27, 2024
    Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticasLa llegada de 5G hace que la gente sienta el rápido desarrollo de Internet móvil y también se ha desarrollado la tecnología de comunicación óptica como una base importante. En la actualidad, China ha construido la red de fibra óptica más larga del mundo y, con el avance continuo de la tecnología 5G, la tecnología de comunicación óptica se utilizará más ampliamente. El desarrollo de la tecnología de comunicación óptica no solo permite a las personas disfrutar de una velocidad de red más rápida, sino que también trae más oportunidades y desafíos. Por ejemplo, nuevas aplicaciones como los juegos en la nube, la realidad virtual y la realidad aumentada requieren redes más estables y de alta velocidad, y la tecnología de comunicación óptica puede satisfacer estas necesidades. Al mismo tiempo, la tecnología de comunicación óptica también ha brindado más oportunidades de innovación, como la atención médica inteligente, la fabricación inteligente y otros campos, utilizarán la tecnología de comunicación óptica para lograr un funcionamiento más eficiente y preciso. ¿Pero sabes qué? Esta asombrosa tecnología no se puede lograr sin el crédito de los equipos de prueba macroambientales, especialmente la cámara de prueba del ciclo de temperatura TC, que es una cámara de prueba de cambio rápido de temperatura. Este artículo le presenta el administrador de calidad de las pruebas de confiabilidad de productos de comunicaciones ópticas: laboratorio de cambio rápido de temperatura.Primero, hablemos brevemente sobre la comunicación óptica. Algunas personas también dicen que se llama comunicación óptica, por lo que al final son dos no es un concepto. De hecho, son dos del mismo concepto. La comunicación óptica es el uso de señales ópticas para la tecnología de la comunicación, y la comunicación óptica se basa en la comunicación óptica, a través de dispositivos ópticos como fibras ópticas y cables ópticos para lograr la transmisión de datos. La tecnología de comunicación óptica se utiliza ampliamente, como nuestro uso diario de banda ancha de fibra óptica, sensores ópticos de teléfonos móviles, medición óptica en el sector aeroespacial, etc. Se puede decir que la comunicación óptica se ha convertido en una parte importante del campo de la comunicación moderna. Entonces, ¿por qué es tan popular la comunicación óptica? De hecho, tiene muchas ventajas, como transmisión de alta velocidad, gran ancho de banda, baja pérdida, etc.Los productos de comunicación óptica comunes incluyen: cable óptico, conmutador de fibra, módem de fibra, etc., utilizados para transmitir y recibir señales ópticas de equipos de comunicación de fibra óptica; El sensor de temperatura, el sensor de tensión, el sensor de desplazamiento, etc., pueden medir varias cantidades físicas en tiempo real y otros sensores de fibra óptica; Amplificador óptico dopado con erbio, amplificador óptico dopado con iterbio y erbio, amplificador Raman, etc., utilizados para ampliar la intensidad de las señales ópticas y otros amplificadores ópticos; El láser de helio-neón, el láser de diodo, el láser de fibra, etc., son fuentes de luz en comunicación óptica, que se utilizan para producir luz láser de alto brillo, direccional y coherente y otros láseres; Fotodetectores, limitadores ópticos, fotodiodos, etc., para recibir señales ópticas y convertirlas en señales eléctricas y otros receptores ópticos; Los interruptores ópticos, los moduladores ópticos, los conjuntos ópticos programables, etc. se utilizan para controlar y ajustar la transmisión y el enrutamiento de señales ópticas y otros controladores ópticos. Tomemos los teléfonos móviles como ejemplo y hablemos de la aplicación de productos de comunicación óptica en teléfonos móviles:1. Fibra óptica: La fibra óptica se utiliza generalmente como parte de la línea de comunicación; debido a su rápida velocidad de transmisión, las señales de comunicación no se ven fácilmente afectadas por interferencias externas y otras características, se ha convertido en una parte importante de la comunicación por teléfono móvil.2. Convertidor fotoeléctrico/módulo óptico: el convertidor fotoeléctrico y el módulo óptico son dispositivos que convierten señales ópticas en señales eléctricas y también son una parte muy importante de la comunicación de los teléfonos móviles. En la era de las comunicaciones de alta velocidad, como 4G y 5G, la velocidad y el rendimiento de dichos equipos deben mejorarse continuamente para satisfacer las necesidades de una comunicación rápida y estable.3. Módulo de cámara: en el teléfono móvil, el módulo de cámara generalmente incluye CCD, CMOS, lentes ópticas y otras partes, y su calidad y rendimiento también tienen un impacto significativo en la calidad de la comunicación óptica del teléfono móvil.4. Pantalla: las pantallas de los teléfonos móviles generalmente utilizan OLED, AMOLED y otras tecnologías; el principio de estas tecnologías está relacionado con la óptica, pero también es una parte importante de la comunicación óptica de los teléfonos móviles.5. Sensor de luz: El sensor de luz se utiliza principalmente en teléfonos móviles para detección de luz ambiental, detección de proximidad y detección de gestos, y también es un importante producto de comunicación óptica para teléfonos móviles.Se puede decir que los productos de comunicación óptica llenan todos los aspectos de nuestra vida y trabajo. Sin embargo, el entorno de producción y uso de los productos de comunicación óptica a menudo cambia, como el entorno climático de alta o baja temperatura cuando se trabaja al aire libre, o el uso durante mucho tiempo también encontrará cambios en la expansión y contracción térmica. Entonces, ¿cómo se logra el uso confiable de estos productos? Cabe mencionar a nuestro protagonista de hoy: la cámara de prueba de cambio rápido de temperatura, también conocida como caja TC en la industria de las comunicaciones ópticas. Para garantizar que los productos de comunicación óptica sigan funcionando normalmente en diversas condiciones ambientales, es necesario realizar pruebas rápidas de cambio de temperatura en los productos de comunicación óptica. La cámara de prueba de cambio rápido de temperatura puede simular una variedad de ambientes de temperatura y humedad diferentes, y simular cambios ambientales extremos instantáneos en el mundo real dentro de un rango rápido. Entonces, ¿cómo se aplica la cámara de prueba de cambio rápido de temperatura en la industria de las comunicaciones ópticas?1. Prueba de rendimiento del módulo óptico: el módulo óptico es un componente clave de la comunicación óptica, como transceptor óptico, amplificador óptico, interruptor óptico, etc. La cámara de prueba de cambio rápido de temperatura puede simular diferentes entornos de temperatura y probar el rendimiento del módulo óptico en diferentes temperaturas para evaluar su adaptabilidad y confiabilidad.2. Prueba de confiabilidad de dispositivos ópticos: los dispositivos ópticos incluyen fibras ópticas, sensores ópticos, rejillas, cristales fotónicos, fotodiodos, etc. La cámara de prueba de cambio rápido de temperatura puede probar el cambio de temperatura de estos dispositivos ópticos y evaluar su confiabilidad y vida útil según el resultados de la prueba.3. Prueba de simulación del sistema de comunicación óptica: la cámara de prueba de cambio rápido de temperatura puede simular diversas condiciones ambientales en el sistema de comunicación óptica, como temperatura, humedad, vibración, etc., para probar el rendimiento, la confiabilidad y la estabilidad de todo el sistema.4. Investigación y desarrollo de tecnología: la industria de las comunicaciones ópticas es una industria intensiva en tecnología, que necesita desarrollar constantemente nuevas tecnologías y nuevos productos. La cámara de prueba de cambio rápido de temperatura se puede utilizar para probar el rendimiento y la confiabilidad de nuevos productos, lo que ayuda a acelerar el desarrollo y el mercado de nuevos productos.En resumen, se puede ver que en la industria de las comunicaciones ópticas, la cámara de prueba de cambio rápido de temperatura se usa generalmente para probar el rendimiento y la confiabilidad de módulos ópticos y dispositivos ópticos. Luego, cuando utilizamos la cámara de prueba de cambio rápido de temperatura para realizar pruebas, diferentes productos de comunicación óptica pueden requerir diferentes estándares. Los siguientes son estándares de prueba de cambio rápido de temperatura para algunos productos de comunicación óptica comunes:1. Fibra óptica: estándares de prueba comunes Existen estándares de prueba de cambio rápido de temperatura de fibra óptica comunes que son los siguientes: IEC 61300-2-22: La norma define el método de prueba de estabilidad y durabilidad de los componentes de fibra óptica, cuya sección 4.3 especifica la temperatura. Método de prueba de estabilidad de componentes de fibra óptica, en el caso de cambios rápidos de temperatura en los componentes de fibra óptica para medición y evaluación. GR-326-CORE: Esta norma especifica los requisitos de prueba de confiabilidad para conectores y adaptadores de fibra óptica, incluidas pruebas de estabilidad térmica para evaluar la confiabilidad de conectores y adaptadores de fibra óptica en entornos con cambios de temperatura. GR-468-CORE: Este estándar define las especificaciones de rendimiento y los métodos de prueba para conectores de fibra óptica, incluidas pruebas de ciclos de temperatura, pruebas de envejecimiento acelerado, etc., para verificar la confiabilidad y estabilidad de los conectores de fibra óptica en diversas condiciones ambientales. ASTM F2181: esta norma define un método para realizar pruebas de falla de la fibra en condiciones ambientales de alta temperatura y alta humedad para evaluar la durabilidad a largo plazo de la fibra. Y los estándares anteriores, como GB/T 2423.22-2012, se prueban y evalúan para determinar la confiabilidad de la fibra óptica en cambios rápidos de temperatura o ambientes de alta temperatura y humedad a largo plazo, lo que puede ayudar a la mayoría de los fabricantes a garantizar la calidad y confiabilidad. de productos de fibra óptica.2. Convertidor fotoeléctrico/módulo óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 2423.22-2012, GR-468-CORE, EIA/TIA-455-14 e IEEE 802.3. Estos estándares cubren principalmente los métodos de prueba y los pasos de implementación específicos de convertidores fotoeléctricos/módulos ópticos, que pueden garantizar el rendimiento y la confiabilidad de los productos en diferentes ambientes de temperatura. Entre ellos, el estándar GR-468-CORE es específicamente para los requisitos de confiabilidad de los convertidores y módulos ópticos, incluida la prueba de ciclo de temperatura, la prueba de calor húmedo y otras pruebas ambientales, que requieren que los convertidores y módulos ópticos mantengan un rendimiento estable y confiable en largos periodos de tiempo. -término de uso.3. Sensor óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 27726-2011, IEC 61300-2-43 e IEC 61300-2-6. Estos estándares cubren principalmente los métodos de prueba y los pasos de implementación específicos de la prueba de cambio de temperatura del sensor óptico, que pueden garantizar el rendimiento y la confiabilidad del producto en diferentes entornos de temperatura. Entre ellos, el estándar GB/T 27726-2011 es el estándar para el método de prueba de rendimiento de sensores ópticos en China, incluido el método de prueba ambiental de sensores de fibra óptica, que requiere que el sensor óptico mantenga un rendimiento estable en una variedad de entornos de trabajo. . El estándar IEC 60749-15 es el estándar internacional para la prueba del ciclo de temperatura de componentes electrónicos y también tiene un valor de referencia para la prueba de cambio rápido de temperatura de sensores ópticos.4. Láser: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 2423.22-2012 "Prueba ambiental de productos eléctricos y electrónicos Parte 2: Prueba Nb: prueba de ciclo de temperatura", GB/T 2423.38-2002 "Métodos de prueba básicos para componentes eléctricos Parte 38 : Prueba de resistencia a la temperatura (IEC 60068-2-2), GB/T 13979-2009 "Método de prueba de rendimiento del producto láser", IEC 60825-1, IEC/TR 61282-10 y otras normas cubren principalmente el método de prueba de cambio de temperatura del láser y pasos de implementación específicos. Puede garantizar el rendimiento y la confiabilidad de los productos en diferentes entornos de temperatura. Entre ellos, el estándar GB/T 13979-2009 es el estándar para el método de prueba de rendimiento de productos láser en China, incluido el método de prueba ambiental del. láser bajo cambios de temperatura, lo que requiere que el láser mantenga un rendimiento estable en una variedad de entornos de trabajo. La norma IEC 60825-1 es una especificación para la integridad de los productos láser, y también existen disposiciones relevantes para la prueba de cambio rápido de temperatura de los láseres. Además, la norma IEC/TR 61282-10 es una de las directrices para el diseño de sistemas de comunicación por fibra óptica, que incluye métodos para la protección ambiental de los láseres.5. Controlador óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GR-1209-CORE y GR-1221-CORE. GR-1209-CORE es un estándar de confiabilidad para equipos de fibra óptica, principalmente para la prueba de confiabilidad de conexiones ópticas, y especifica el experimento de confiabilidad de sistemas de conexión óptica. Entre ellos, el ciclo rápido de temperatura (FTC) es uno de los proyectos de prueba, que consiste en probar la confiabilidad de los módulos de fibra óptica en condiciones de temperatura que cambian rápidamente. Durante la prueba, el controlador óptico debe realizar ciclos de temperatura en el rango de -40 °C a 85 °C. Durante el ciclo de temperatura, el módulo debe mantener su funcionamiento normal y no producir una salida anormal, y el tiempo de prueba es de 100 ciclos de temperatura. . GR-1221-CORE es un estándar de confiabilidad para dispositivos pasivos de fibra óptica y es adecuado para probar dispositivos pasivos. Entre ellos, la prueba del ciclo de temperatura es uno de los elementos de prueba, que también requiere que el controlador óptico se pruebe en el rango de -40 °C a 85 °C, y el tiempo de prueba es de 100 ciclos. Ambos estándares especifican la prueba de confiabilidad del controlador óptico en un ambiente de cambio de temperatura, que puede determinar la estabilidad y confiabilidad del controlador óptico en condiciones ambientales adversas.En general, los diferentes estándares de prueba de cambio rápido de temperatura pueden centrarse en diferentes parámetros y métodos de prueba; se recomienda elegir los estándares de prueba correspondientes de acuerdo con el uso de productos específicos.Recientemente, cuando hablamos de la verificación de confiabilidad de los módulos ópticos, hay un indicador contradictorio: el número de ciclos de temperatura de la verificación del módulo óptico es 10 veces, 20 veces, 100 veces o incluso 500 veces.Definiciones de frecuencia en dos estándares de la industria:Las referencias a estas normas tienen fuentes claras y son correctas.Para el módulo óptico directo 5G, nuestra opinión es que el número de ciclos es 500 y la temperatura se establece en -40 °C ~85 °C.La siguiente es la descripción del 20/10/100/500 anterior en el texto original del GR-468(2004)Debido al espacio limitado, este artículo presenta el uso de una cámara de prueba de cambio rápido de temperatura en la industria de las comunicaciones ópticas. Si tiene alguna pregunta sobre el uso de la cámara de prueba de cambio rápido de temperatura y otros equipos de prueba ambientales, bienvenido a hablar con nosotros y aprender juntos.
    LEER MÁS
  • Comparación de prueba climática y prueba ambiental Comparación de prueba climática y prueba ambiental
    Sep 19, 2024
    Comparación de prueba climática y prueba ambientalPrueba de entorno climático: cámara de prueba de temperatura y humedad constantes, cámara de prueba de temperatura alta y baja, cámara de prueba de choque frío y caliente, cámara de prueba de alternancia de calor y humedad, cámara de prueba de cambio rápido de temperatura, cámara de prueba de cambio de temperatura lineal, temperatura constante sin cita previa y cámara de prueba de humedad, etc. Todos ellos implican control de temperatura.Debido a que existen múltiples puntos de control de temperatura para elegir, el método de control de temperatura de la cámara climática también tiene tres soluciones: control de temperatura de entrada, control de temperatura del producto y control de temperatura en "cascada". Los dos primeros son control de temperatura de un solo punto y el tercero es control de temperatura de dos parámetros.El método de control de temperatura de un solo punto ha sido muy maduro y ampliamente utilizado.La mayoría de los primeros métodos de control eran controles de interruptores de "ping-pong", comúnmente conocidos como calefacción cuando hacía frío y refrigeración cuando hacía calor. Este modo de control es un modo de control de retroalimentación. Cuando la temperatura del flujo de aire en circulación es mayor que la temperatura establecida, la válvula electromagnética de refrigeración se abre para entregar un volumen frío al flujo de aire en circulación y reducir la temperatura del flujo de aire. De lo contrario, se activa el interruptor de circuito del dispositivo de calefacción para calentar directamente el flujo de aire circulante. Elevar la temperatura de la corriente de aire. Este modo de control requiere que el dispositivo de refrigeración y los componentes de calefacción de la cámara de prueba estén siempre en un estado de funcionamiento en espera, lo que no sólo desperdicia mucha energía, sino que también el parámetro controlado (temperatura) está siempre en un estado de "oscilación", y la precisión del control no es alta.Ahora, el método de control de temperatura de un solo punto se ha cambiado principalmente al método de control integral diferencial proporcional (PID), que puede proporcionar la corrección de temperatura controlada de acuerdo con el cambio pasado del parámetro controlado (control integral) y la tendencia de cambio (control diferencial). ), lo que no solo ahorra energía, sino que también la amplitud de "oscilación" es pequeña y la precisión del control es alta.El control de temperatura de doble parámetro consiste en recopilar el valor de temperatura de la entrada de aire de la cámara de prueba y el valor de temperatura cerca del producto al mismo tiempo. La entrada de aire de la cámara de prueba está muy cerca de la posición de instalación del evaporador y el calentador en la sala de modulación de aire, y su magnitud refleja directamente el resultado de la modulación de aire. El uso de este valor de temperatura como parámetro de control de retroalimentación tiene la ventaja de modular rápidamente los parámetros de estado del aire en circulación.El valor de temperatura cerca del producto indica las condiciones ambientales de temperatura real que sufre el producto, que es el requisito de la especificación de prueba ambiental. El uso de este valor de temperatura como parámetro del control de retroalimentación puede garantizar la efectividad y credibilidad de la prueba ambiental de temperatura, por lo que este enfoque tiene en cuenta las ventajas de ambos y los requisitos de la prueba real. La estrategia de control de temperatura de doble parámetro puede ser el "control de tiempo compartido" independiente de los dos grupos de datos de temperatura, o los dos valores de temperatura ponderados se pueden combinar en un valor de temperatura como una señal de control de retroalimentación de acuerdo con un cierto coeficiente de ponderación. y el valor del coeficiente de ponderación está relacionado con el tamaño de la cámara de prueba, la velocidad del viento del flujo de aire circulante, el tamaño de la tasa de cambio de temperatura, la producción de calor del trabajo del producto y otros parámetros.Debido a que la transferencia de calor es un proceso físico dinámico complejo y se ve muy afectada por las condiciones ambientales atmosféricas alrededor de la cámara de prueba, el estado de funcionamiento de la propia muestra probada y la complejidad de la estructura, es difícil establecer un modelo matemático perfecto para el control de temperatura y humedad de la cámara de prueba. Para mejorar la estabilidad y precisión del control, se introducen la teoría y el método de control de lógica difusa en el control de algunas cámaras de prueba de temperatura. En el proceso de control, se simula el modo de pensamiento humano y se adopta el control predictivo para controlar el campo espacial de temperatura y humedad más rápidamente.En comparación con la temperatura, la selección de los puntos de control y medición de la humedad es relativamente sencilla. Durante el flujo de circulación del aire húmedo bien regulado hacia la cámara de prueba del ciclo de alta y baja temperatura, el intercambio de moléculas de agua entre el aire húmedo y la pieza de prueba y las cuatro paredes de la cámara de prueba es muy pequeño. Mientras la temperatura del aire en circulación sea estable, el flujo de aire en circulación desde la entrada a la cámara de prueba hasta la salida de la cámara de prueba está en proceso. El contenido de humedad del aire húmedo cambia muy poco. Por lo tanto, el valor de humedad relativa del aire detectado en cualquier punto del campo de flujo de aire circulante en la caja de prueba, como la entrada, la corriente media del campo de flujo o la salida de aire de retorno, es básicamente el mismo. Debido a esto, en muchas cámaras de prueba que utilizan el método de bulbo húmedo y seco para medir la humedad, el sensor de bulbo húmedo y seco se instala en la salida de aire de retorno de la cámara de prueba. Además, debido al diseño estructural de la caja de prueba y la conveniencia del mantenimiento en uso, el sensor de bulbo húmedo y seco utilizado para la medición y control de la humedad relativa se coloca en la entrada de aire de retorno para una fácil instalación y también ayuda a reemplazar regularmente el sensor húmedo. gasa del bulbo y limpie el cabezal sensor de temperatura de la resistencia PT100, y de acuerdo con los requisitos de la prueba de calor húmedo GJB150.9A 6.1.3. La velocidad del viento que pasa a través del sensor de bulbo húmedo no debe ser inferior a 4,6 m/s. El sensor de bulbo húmedo con un pequeño ventilador está instalado en la salida de aire de retorno para facilitar el mantenimiento y el uso.   
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos