¿Cuáles son las pruebas de confiabilidad de diodos emisores de luz para comunicación?Determinación de fallas de luz que emite dos tubos para comunicación:Proporcione una corriente fija para comparar la potencia de salida óptica; si el error es superior al 10%, se determina la falla.Prueba de estabilidad mecánica:Prueba de choque: 5tims/eje, 1500G, 0.5ms Prueba de vibración: 20G, 20 ~ 2000Hz, 4min/ciclo, 4ciclos/eje Prueba de choque térmico líquido: 100℃(15seg)←→0℃(5seg)/5cicloPrueba de durabilidad:Prueba de envejecimiento acelerado: 85 ℃/potencia (potencia nominal máxima)/5000 horas, 10000 horasPrueba de almacenamiento a alta temperatura: temperatura máxima de almacenamiento nominal/2000 horasPrueba de almacenamiento a baja temperatura: temperatura máxima de almacenamiento nominal/2000 horasPrueba de ciclo de temperatura: -40 ℃ (30 min) ←85 ℃ (30 min), RAMPA: 10/min, 500 ciclosPrueba de resistencia a la humedad: 40 ℃/95 %/56 días, 85 ℃/85 %/2000 horas, tiempo de selladoPrueba de detección del elemento del diodo de comunicación:Prueba de detección de temperatura: 85 ℃/potencia (potencia nominal máxima)/96 horas Determinación de falla de detección: compare la potencia de salida óptica con la corriente fija y determine la falla si el error es mayor al 10 %Prueba de detección del módulo de diodo de comunicación:Paso 1: Detección del ciclo de temperatura: -40 ℃ (30 min) ← → 85 ℃ (30 min), RAMPA: 10/min, 20 ciclos, sin fuente de alimentaciónSegundo: Prueba de detección de temperatura: 85 ℃/potencia (potencia nominal máxima)/96 horas
Definición y uso de la cámara de prueba de ciclos de temperaturaCámara de prueba de ciclos de temperatura es un tipo de equipo de laboratorio ampliamente utilizado en diversas industrias, su función principal es realizar ciclos del producto dentro de un cierto rango de temperatura para simular el funcionamiento del producto en diferentes ambientes de temperatura. El equipo es una herramienta importante para realizar pruebas de confiabilidad del producto, control de calidad y evaluación del desempeño del producto.La cámara de prueba de ciclos de temperatura se usa ampliamente y puede usarse para pruebas en diversos campos, como el aeroespacial, automotriz, electrónico, de energía eléctrica, médico y otros. En el sector aeroespacial, las cámaras de prueba de ciclos de temperatura se utilizan para probar el rendimiento de los componentes de las aeronaves a temperaturas extremas para garantizar su confiabilidad en entornos extremos. En el campo automotriz, la cámara de prueba del ciclo de temperatura se utiliza para probar el rendimiento de los componentes del automóvil en diferentes condiciones de temperatura y humedad para garantizar que el automóvil pueda funcionar normalmente en una variedad de entornos. En el campo de la electrónica y la energía, las cámaras de prueba de ciclos de temperatura se utilizan para probar el rendimiento y la confiabilidad de equipos electrónicos en diferentes condiciones de temperatura para garantizar que el equipo pueda funcionar de manera estable durante mucho tiempo. En el campo médico, las cámaras de prueba de ciclos de temperatura se utilizan para probar el rendimiento y la confiabilidad de equipos médicos en diferentes condiciones de temperatura y humedad para garantizar el funcionamiento normal del equipo.El principio de funcionamiento de la cámara de prueba de ciclos de temperatura es realizar la prueba de ciclos controlando la temperatura y la humedad en la cámara. El dispositivo tiene una variedad de modos de control de temperatura, como control de temperatura constante, control de temperatura programado, control de temperatura programado, etc., que se pueden seleccionar según las necesidades. Durante el proceso de prueba, la cámara de prueba de ciclos de temperatura colocará el producto en diferentes entornos de temperatura para realizar pruebas y simular el uso del producto en diferentes entornos. Una vez completada la prueba, los usuarios pueden mejorar y actualizar el producto de acuerdo con los resultados de la prueba para mejorar la confiabilidad y el rendimiento del producto.En resumen, la cámara de prueba de ciclos de temperatura es un equipo de laboratorio ampliamente utilizado en diversas industrias, y su función principal es realizar ciclos del producto dentro de un cierto rango de temperatura para simular el funcionamiento del producto en diferentes ambientes de temperatura. El equipo se puede utilizar para pruebas en diversos campos, como el aeroespacial, automotriz, electrónico, eléctrico, médico y otros, y es una herramienta importante para realizar pruebas de confiabilidad del producto, control de calidad y evaluación del desempeño del producto.
Principios que debe seguir el funcionamiento de la cámara de prueba de temperatura y humedad constantes Cámara de prueba de temperatura y humedad constantes, también conocida como máquina de prueba de temperatura y humedad constante, cámara de prueba alterna de temperatura y humedad programable, termostato o cámara de temperatura y humedad constante, se puede utilizar para probar diversos entornos y probar el rendimiento del material del equipo, este material tiene resistencia al calor, resistencia al frío y seco. Resistencia y resistencia a la humedad. Sin embargo, cuando se utiliza la cámara de prueba de temperatura y humedad constantes, el funcionamiento correcto ayuda a obtener datos científicos para el experimentador, entonces, ¿qué principios se deben seguir en el funcionamiento de la cámara de prueba de temperatura y humedad constantes?u200ePrimero, en la prueba ambiental, el operador debe estar familiarizado con el rendimiento de la muestra de prueba requerida, las condiciones de prueba, los procedimientos de prueba y la tecnología de prueba, familiarizado con el rendimiento técnico del equipo de prueba utilizado y comprender la estructura del equipo, especialmente familiarizado con el control de funcionamiento y rendimiento. Al mismo tiempo, lea atentamente el manual de funcionamiento del equipo de prueba para evitar un funcionamiento anormal del equipo de prueba debido a errores de operación, que pueden causar daños a la muestra de prueba y datos de prueba incorrectos. u200eu200eEn segundo lugar, para garantizar el funcionamiento normal de la prueba, se debe seleccionar el equipo de prueba adecuado de acuerdo con las diferentes condiciones de la muestra de prueba y una proporción razonable entre la temperatura y la humedad de la muestra de prueba y el volumen efectivo del laboratorio. debe mantenerse. Para pruebas de muestras calentadas, el volumen no debe ser mayor que una décima parte del volumen efectivo de la cámara de prueba. El volumen de la muestra de prueba sin calentar no debe exceder una quinta parte del volumen efectivo de la cámara de prueba. u200eEn tercer lugar, para las pruebas ambientales que necesitan agregar medios a la prueba, se debe agregar correctamente de acuerdo con los requisitos de la prueba. u200e Por ejemplo, existen ciertos requisitos para el agua en las cámaras de prueba de temperatura y humedad y se debe reducir la resistencia. Existe en el mercado una forma de agua pura más económica y cómoda. Su resistencia es equivalente a la del agua destilada. u200eCuarto, la gasa de bulbo húmedo (papel de bulbo húmedo) tiene ciertos requisitos para su uso en una cámara de prueba de temperatura y humedad, y no se puede reemplazar ninguna gasa, porque la lectura de humedad relativa es la diferencia entre la distancia de la raíz y la temperatura y humedad, y estrictamente hablando , también está relacionado con la presión atmosférica local y la velocidad del viento en ese momento. El valor indicador de la temperatura de bulbo húmedo está relacionado con la cantidad de agua absorbida por la gasa y la cantidad de evaporación superficial. Estos están directamente relacionados con la calidad de la gasa, por lo que el clima estipula que la gasa de bola húmeda debe ser una "gasa de bola húmeda" especial tejida con lino. De lo contrario, es difícil garantizar la exactitud del valor del termómetro de bulbo húmedo, es decir, la exactitud de la humedad. Además, también se especifica claramente la posición de la gasa húmeda. Longitud de la gasa: 100 mm, envuelva bien la sonda del sensor, coloque la sonda a 25-30 mm de distancia de la taza de humedad, sumerja la gasa en la taza para garantizar la precisión del control del equipo y la humedad. u200eEn quinto lugar, la ubicación de la muestra de prueba debe estar a más de 10 cm de la pared de la cámara y se deben colocar varias muestras en el mismo plano en la medida de lo posible. Las muestras deben colocarse sin bloquear las salidas de aire y los respiraderos de retorno, y los sensores de temperatura y humedad deben mantenerse a distancia. Asegúrese de que la temperatura de prueba sea correcta. u200eAl operar la cámara de prueba de temperatura y humedad constantes de acuerdo con los principios anteriores, la operación correcta del proceso de prueba mejorará en gran medida el nivel de los datos de la prueba. Siempre que se respeten los principios anteriores, cabe decir que las pruebas de temperatura y humedad se pueden realizar con éxito. u200e
Máquina de detección de estrés por cambio rápido de temperatura ESSDetección de estrés ambiental (ESS)La detección de tensiones es el uso de técnicas de aceleración y tensión ambiental bajo el límite de resistencia de diseño, tales como: quemado, ciclos de temperatura, vibración aleatoria, ciclo de energía... Al acelerar la tensión, surgen los defectos potenciales en el producto [material potencial de las piezas]. Defectos, defectos de diseño, defectos de proceso, defectos de proceso], y eliminar tensiones residuales electrónicas o mecánicas, así como eliminar condensadores perdidos entre placas de circuitos multicapa, la etapa de muerte temprana del producto en la curva del baño se elimina y repara con anticipación. , para que el producto a través de un cribado moderado, guarde el Durante el período normal y el período de declive de la curva de la bañera para evitar el producto en el proceso de uso, la prueba de estrés ambiental a veces conduce a fallas, lo que resulta en pérdidas innecesarias. Aunque el uso de la detección de tensión ESS aumentará el costo y el tiempo, para mejorar el rendimiento de entrega del producto y reducir la cantidad de reparaciones, existe un efecto significativo, pero se reducirá el costo total. Además, también se mejorará la confianza del cliente, generalmente para las piezas electrónicas los métodos de detección de tensión son prequemado, ciclo de temperatura, alta temperatura, baja temperatura, el método de detección de tensión de la placa de circuito impreso PCB es el ciclo de temperatura, por el costo electrónico del La detección de tensión es: precombustión de energía, ciclos de temperatura, vibración aleatoria, además de que la detección de tensión en sí es una etapa del proceso, en lugar de una prueba, la detección es el 100% del procedimiento del producto.Características del producto de la máquina de detección de tensión por cambio rápido de temperatura:1. Puede establecer diferentes variaciones de temperatura de detección de tensión de 5°C/min, 10°C/min y 15°C/min.2. Puede realizar cambios rápidos de temperatura (detección de estrés), pruebas de condensación, altas temperaturas y humedad, ciclos de temperatura y humedad y otras pruebas.3. Cumple con los requisitos de la prueba de detección de estrés de productos de equipos electrónicos.4. Se puede cambiar entre dos métodos de prueba de temperatura igual y temperatura promedio.Requisitos de especificación de la máquina de detección de tensión por cambio rápido de temperatura:1. Puede establecer una variedad de condiciones de prueba de detección de estrés (variabilidad rápida de temperatura) de 5 °C/min, 10 °C/min y 15 °C/min.2, cumple con la detección de estrés de productos de equipos electrónicos, proceso sin plomo, MIL-STD-2164, MIL-344A-4-16, MIL-2164A-19, NABMAT-9492, GJB-1032-90, GJB/Z34- 5.1.6, IPC-9701 y otros requisitos de prueba.3. Puede realizar el modo de prueba de temperatura igual y temperatura promedio.4. Utiliza lámina de aluminio para verificar la capacidad de carga de la máquina (carga no plástica).
Cámara de prueba de ciclos de temperatura rápida Lab CompanionIntroducción de Lab CompanionCon más de 20 años de experiencia, Compañero de laboratorio es un fabricante de cámaras ambientales de clase mundial y un destacado proveedor de sistemas y equipos de prueba llave en mano. Todas nuestras cámaras se basan en la reputación de Lab Companion de larga vida útil y confiabilidad excepcional. Con un alcance de diseño, fabricación y servicio, Lab Companion ha establecido un sistema de gestión de calidad que cumple con la Norma Internacional del Sistema de Calidad ISO 9001:2008. El programa de calibración de equipos de Lab Companion está acreditado según la norma internacional ISO 17025 y la norma nacional estadounidense ANSI/NCSL-Z-540-1 por A2LA. A2LA es miembro de pleno derecho y signatario de la Cooperación Internacional de Acreditación de Laboratorios (ILAC), la Acreditación de Laboratorios de Asia Pacífico (APLAC) y la Cooperación Europea para la Acreditación (EA). Las cámaras de pruebas ambientales de la serie SE de Lab Companion ofrecen un sistema de flujo de aire significativamente mejorado, que proporciona mejores gradientes y mejores tasas de cambio de temperatura del producto. Estas cámaras utilizan el programador/controlador 8800 insignia de Thermotron, que cuenta con una pantalla plana de 12,1” de alta resolución con interfaz de usuario táctil, capacidades ampliadas para realizar gráficos, registrar datos, editar, acceder a ayuda en pantalla y almacenamiento de datos en el disco duro a largo plazo.No solo ofrecemos productos de la más alta calidad, sino que también brindamos soporte continuo diseñado para mantenerlo en funcionamiento mucho después de la venta inicial. Brindamos servicio local directo de fábrica con un extenso inventario de las piezas que pueda necesitar. ActuaciónRango de temperatura: -70°C a +180°CRendimiento: Con una carga de aluminio de 23 kg (IEC60068-3-5), la velocidad de aumento de +85 °C a -40 °C es de 15 ℃/min; la velocidad de enfriamiento de -40 °C a +85 °C también es de 15 ℃/min.Control de temperatura: ± 1°C Temperaturas de bulbo seco desde el punto de control después de la estabilización en el sensor de controlEl rendimiento se basa en una condición ambiental de 75 °F (23,9 °C) y 50 % de humedad relativa.Rendimiento de refrigeración/calefacción basado en la medición en el sensor de control en la corriente de aire de suministroestructuraInteriorAcero inoxidable no magnético Serie 300 con alto contenido de níquelCosturas internas soldadas con heliarco para sellado hermético del liner.Esquinas y uniones diseñadas para permitir la expansión y contracción bajo las temperaturas extremas encontradas.Drenaje de condensado ubicado en el piso del liner y debajo del pleno de acondicionamientoLa base de la cámara está completamente soldada.Aislamiento de fibra de vidrio que no se asienta “Ultra-Lite”Un estante interior ajustable de acero inoxidable es estándarExteriorChapa de acero tratada moldeadaSe proporcionan cubiertas de acceso metálicas para facilitar la apertura de las puertas a los componentes eléctricos.Acabado de laca a base de agua, seca al aire, rociada sobre una superficie limpia e imprimada.Puertas de acceso con bisagras fáciles de levantar para dar servicio al sistema de refrigeraciónUn puerto de acceso de 12,5 cm de diámetro con soldadura interior y tapón aislante extraíble montado en accesorios de pared del lado derecho en puerta con bisagras para fácil acceso.CaracterísticasLa operación de la cámara muestra claramente información útil sobre el tiempo de ejecuciónGraphing Screen ofrece capacidades ampliadas, programación e informes mejoradosEl estado del sistema muestra parámetros cruciales del sistema de refrigeraciónLa entrada de programa facilita la carga, visualización y edición de perfiles.Los asistentes de configuración de pasos rápidos facilitan la entrada al perfilTablas de refrigeración emergentes para una referencia prácticaTherm-Alarm® proporciona protección de alarma de temperatura excesiva o insuficienteLa pantalla de registro de actividad proporciona un historial completo del equipoEl servidor web permite el acceso a Internet al equipo a través de EthernetEl teclado emergente fácil de usar hace que la entrada de datos sea rápida y sencillaIncluye:- Cuatro puertos USB: dos externos y dos internos- Ethernet-RS-232Especificaciones técnicas1-4 canales programables independientementePrecisión de medición: 0,25 % del intervalo típicoEscala de temperatura seleccionable °C o °FPantalla táctil de panel plano en color de 12,1” (30 cm)Resolución: 0,1°C, 0,1%RH, 0,01 para otras aplicaciones linealesReloj en tiempo real incluidoFrecuencia de muestreo: variable de proceso muestreada cada 0,1 segundosBanda Proporcional: Programable 1.0° a 300°Método de control: DigitalIntervalos: IlimitadoResolución de intervalo: 1 segundo a 99 horas, 59 minutos con resolución de 1 segundo-RS-232- Más de 10 años de almacenamiento de datos- Control de temperatura del producto- Tablero de retransmisión de eventosModos de funcionamiento: Automático o ManualAlmacenamiento del programa: ilimitadoBucles de programa:- Hasta 64 bucles por programaLos bucles se pueden repetir hasta 9999 veces.- Se permiten hasta 64 bucles anidados por
Prueba de estabilidad de fármacos
La eficacia y seguridad de los medicamentos han atraído mucha atención y también es una cuestión de medios de vida a la que el país y el gobierno conceden gran importancia. La estabilidad de los medicamentos afectará la eficacia y seguridad. Para garantizar la calidad de los medicamentos y los contenedores de almacenamiento, se deben realizar pruebas de estabilidad para determinar su tiempo efectivo y estado de almacenamiento. La prueba de estabilidad estudia principalmente si la calidad de los medicamentos se ve afectada por factores ambientales como la temperatura, la humedad y la luz, y si cambia con el tiempo y la correlación entre ellos, y estudia la curva de degradación de los medicamentos, según la cual se presume el período efectivo. para garantizar la eficacia y seguridad de los medicamentos cuando se utilizan. Este artículo recopila la información estándar y los métodos de prueba necesarios para diversas pruebas de estabilidad para referencia de los clientes.
Primero, criterios de prueba de estabilidad de fármacos.
Condiciones de almacenamiento de drogas:
Condiciones de almacenamiento (Nota 2)
Experimento a largo plazo
25 ℃ ± 2 ℃ / 60 % ± 5 % HR o
30 ℃ ± 2 ℃ /65%±5% humedad relativa
prueba acelerada
40 ℃ ± 2 ℃ / 75 % ± 5 % humedad relativa
Prueba media (Nota 1)
30 ℃ ± 2 ℃ / 65 % ± 5 % humedad relativa
Nota 1: Si la condición de prueba a largo plazo se ha establecido en 30 ℃ ± 2 ℃/65 % ±5 % RH, no hay prueba intermedia; si la condición de almacenamiento a largo plazo es 25 ℃ ± 2 ℃/60 % ± 5 % RH y hay un cambio significativo en la prueba acelerada, entonces se debe agregar la prueba intermedia. Y debería evaluarse según el criterio de "cambio significativo".
Nota 2: Los recipientes sellados e impermeables, como las ampollas de vidrio, pueden estar exentos de condiciones de humedad. A menos que se determine lo contrario, todas las pruebas se llevarán a cabo de acuerdo con el plan de pruebas de estabilidad en la prueba intermedia.
Los datos de la prueba acelerada deberían estar disponibles durante seis meses. La duración mínima de la prueba de estabilidad es de 12 meses para la prueba intermedia y la prueba de larga duración.
Conservar en frigorífico:
Condiciones de almacenamiento
Experimento a largo plazo
5 ℃ ± 3 ℃
prueba acelerada
25 ℃ ± 2 ℃ / 60 % ± 5 % humedad relativa
Almacenado en congelador:
Condiciones de almacenamiento
Experimento a largo plazo
-20 ℃ ± 5 ℃
prueba acelerada
5 ℃ ± 3 ℃
Si el producto que contiene agua o disolventes que pueden estar sujetos a pérdida de disolvente está envasado en un recipiente semipermeable, la evaluación de la estabilidad debe realizarse en condiciones de baja humedad relativa durante un largo período de tiempo, o una prueba intermedia de 12 meses, y una prueba acelerada de 6 meses, con el fin de demostrar que el medicamento colocado en el recipiente semipermeable puede soportar el ambiente de baja humedad relativa.
Que contengan agua o disolventes
Condiciones de almacenamiento
Experimento a largo plazo
25 ℃ ± 2 ℃ / 40 % ± 5 % RH o 30 ℃ ± 2 ℃ /35%±5% humedad relativa
prueba acelerada
40 ℃ ± 2 ℃; ≤25% HR
Prueba media (Nota 1)
30 ℃ ± 2 ℃ / 35 % HR ± 5 % HR
Nota 1: Si la condición de prueba a largo plazo es 30 ℃ ± 2 ℃ / 35 % ± 5 % RH, no hay prueba intermedia.
El cálculo de la tasa relativa de pérdida de agua a una temperatura constante de 40 ℃ es el siguiente:
Humedad relativa sustituida (A)
Controlar la humedad relativa (R)
Relación de tasa de pérdida de agua ([1-R]/[1-A])
60% HR
25% HR
1.9
60% HR
40% HR
1.5
65% HR
35% HR
1.9
75% HR
25% HR
3.0
Ilustración: Para medicamentos acuosos colocados en recipientes semipermeables, la tasa de pérdida de agua con una HR del 25 % es tres veces mayor que con una HR del 75 %.
En segundo lugar, soluciones de estabilidad de fármacos.
Criterios comunes de prueba de estabilidad de medicamentos
(Fuente: Administración de Alimentos y Medicamentos, Ministerio de Salud y Bienestar)
Artículo
Condiciones de almacenamiento
Experimento a largo plazo
25°C/60% HR
prueba acelerada
40°C/75% HR
prueba intermedia
30°C/65% HR
(1) Prueba de amplio rango de temperatura
Artículo
Condiciones de almacenamiento
Experimento a largo plazo
Condiciones de temperatura baja o bajo cero.
prueba acelerada
Temperatura ambiente y condiciones de humedad o baja temperatura.
(2) Equipo de prueba
1. Cámara de prueba de temperatura y humedad constantes
2. Cámara de prueba de estabilidad de fármacos
Condiciones de prueba de la computadora portátilLa computadora portátil desde la evolución inicial de la pantalla de 12 pulgadas hasta la actual pantalla con retroiluminación LED, su eficiencia informática y procesamiento 3D, no se perderán frente a la computadora de escritorio general, y el peso es cada vez menos pesado, los requisitos de prueba de confiabilidad relativa para toda la computadora portátil se está volviendo cada vez más estricta, desde el empaque inicial hasta el arranque actual, las tradicionales altas temperaturas y alta humedad hasta la prueba de condensación actual. Desde el rango de temperatura y humedad del entorno general hasta la prueba del desierto como condición común, estas son las partes que deben considerarse en la producción de componentes y diseño relacionados con computadoras portátiles, las condiciones de prueba de las pruebas ambientales relevantes recopiladas hasta ahora. están organizados y compartidos con usted.Prueba de pulsación del teclado:Prueba uno:GB: 1 millón de vecesPresión clave: 0,3 ~ 0,8 (N)Carrera del botón: 0,3 ~ 1,5 (mm)Prueba 2: Presión de las teclas: 75 g (± 10 g). Pruebe 10 teclas durante 14 días, 240 veces por minuto, un total de aproximadamente 4,83 millones de veces, una vez cada 1 millón de veces.Fabricantes japoneses: 2 a 5 millones de vecesFabricante taiwanés 1: más de 8 millones de vecesFabricante de Taiwán 2:10 millones de vecesPrueba de extracción del interruptor de alimentación y del conector:Este modelo de prueba simula las fuerzas laterales que cada conector puede soportar en condiciones de uso anormal. Elementos de prueba generales para portátiles: USB, 1394, PS2, RJ45, módem, VGA... Fuerza de aplicación igual de 5 kg (50 veces), tirar y enchufar hacia arriba y hacia abajo hacia la izquierda y hacia la derecha.Prueba del interruptor de alimentación y del enchufe del conector:4000 veces (fuente de alimentación)Prueba de apertura y cierre de la cubierta de la pantalla:Fabricantes taiwaneses: abren y cierran 20.000 vecesFabricante japonés 1: prueba de apertura y cierre 85.000 vecesFabricante japonés 2: abriendo y cerrando 30.000 vecesPrueba del interruptor de recuperación y espera del sistema:Tipo de nota general: intervalo de 10 segundos, 1000 ciclosFabricante japonés: prueba del interruptor de recuperación y espera del sistema 2000 vecesCausas comunes de falla de una computadora portátil:☆ Caen objetos extraños sobre el cuaderno.☆ Se cae de la mesa mientras está en uso☆ Guarde el cuaderno en un bolso o maletín☆ Temperatura extremadamente alta o baja ☆ Uso normal (uso excesivo)☆ Uso incorrecto en destinos turísticos☆PCMCIA insertado incorrectamente☆ Coloque objetos extraños en el tecladoPrueba de caída de apagado:Tipo de cuaderno general: 76 cm.Caída del paquete GB: 100 cmComputadoras portátiles japonesas y del ejército estadounidense: la altura de la computadora es de 90 cm desde todos los lados, lados y esquinas, un total de 26 ladosPlataforma: 74 cm (se requiere embalaje)Terreno: 90 cm (se requiere embalaje)TOSHIBA&BENQ 100 cmPrueba de caída de arranque:Japonés: caída de bota de 10 cm.Taiwán: caída de bota de 74 cmChoque de temperatura en la placa principal del portátil:Pendiente 20℃/minNúmero de ciclos 50 ciclos (sin operación durante el impacto)Los estándares técnicos y las condiciones de prueba del ejército de EE. UU. para la adquisición de computadoras portátiles son los siguientes:Prueba de impacto: deje caer la computadora 26 veces desde todos los lados, costados y esquinas a una altura de 90 cmPrueba de resistencia a terremotos: frecuencia de 20 Hz ~ 1000 Hz, 1000 Hz ~ 2000 Hz una vez por hora Vibración continua de los ejes X, Y y ZPrueba de temperatura: 0 ℃ ~ 60 ℃ 72 horas de horno de envejecimientoPrueba de impermeabilidad: rocíe agua en la computadora durante 10 minutos en todas las direcciones y la velocidad de rociado de agua es de 1 mm por minuto.Prueba de polvo: Pulverizar la concentración de 60.000 mg/por metro cúbico de polvo durante 2 segundos (intervalo de 10 minutos, 10 veces consecutivas, tiempo 1 hora)Cumple con las especificaciones militares MIL-STD-810Prueba de impermeabilidad:Computadora portátil del Ejército de EE. UU.: clase de protección: IP54 (polvo y lluvia) Roció la computadora con agua en todas direcciones durante 10 minutos a una velocidad de 1 mm por minuto.Prueba a prueba de polvo:Cuaderno del Ejército de EE. UU.: Pulverizar una concentración de 60.000 mg/m3 de polvo durante 2 segundos (intervalos de 10 minutos, 10 veces consecutivas, tiempo 1 hora)
Términos de temperatura y humedadLa temperatura del punto de rocío Td, en el contenido de vapor de agua del aire sin cambios, mantiene una cierta presión, de modo que el aire se enfría para alcanzar la temperatura de saturación llamada temperatura del punto de rocío, denominada punto de rocío, la unidad se expresa en ° C o ℉. En realidad, es la temperatura a la que el vapor de agua y el agua están en equilibrio. La diferencia entre la temperatura real (t) y la temperatura del punto de rocío (Td) indica hasta qué punto está saturado el aire. Cuando t>Td, significa que el aire no está saturado, cuando t=Td, está saturado, y cuando t
Zona de conducción de calorConductividad térmicaEs la conductividad térmica de una sustancia, pasando de alta temperatura a baja temperatura dentro de la misma sustancia. También conocido como: conductividad térmica, conductividad térmica, conductividad térmica, coeficiente de transferencia de calor, transferencia de calor, conductividad térmica, conductividad térmica, conductividad térmica, conductividad térmica.Fórmula de conductividad térmicak = (Q/t) *L/(A*T) k: conductividad térmica, Q: calor, t: tiempo, L: longitud, A: área, T: diferencia de temperatura en unidades SI, la unidad de conductividad térmica es W/(m*K), en unidades imperiales, es Btu · pies/(h · pies2 · °F)Coeficiente de transferencia de calorEn termodinámica, ingeniería mecánica e ingeniería química, la conductividad térmica se utiliza para calcular la conducción de calor, principalmente la conducción de calor por convección o la transformación de fase entre fluido y sólido, que se define como el calor a través de la unidad de área por unidad de tiempo bajo el diferencia de temperatura unitaria, llamada coeficiente de conducción de calor de la sustancia, si el espesor de la masa de L, el valor de medición se multiplica por L, el valor resultante es el coeficiente de conductividad térmica, generalmente denotado como k.Conversión de unidades del coeficiente de conducción de calor.1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).El impacto de las altas temperaturas en los productos electrónicos:El aumento de temperatura hará que el valor de resistencia de la resistencia disminuya, pero también acortará la vida útil del capacitor; además, la alta temperatura hará que el transformador, el rendimiento de los materiales de aislamiento relacionados disminuya, la temperatura es demasiado Un nivel alto también hará que cambie la estructura de aleación de la unión de soldadura en la placa PCB: el IMC se espesa, las uniones de soldadura se vuelven quebradizas, los bigotes de estaño aumentan, la resistencia mecánica disminuye, la temperatura de la unión aumenta, la relación de amplificación de corriente del transistor aumenta rápidamente, lo que resulta en aumentos de corriente del colector. , la temperatura de la unión aumenta aún más y, finalmente, falla el componente.Explicación de los términos adecuados:Temperatura de unión: La temperatura real de un semiconductor en un dispositivo electrónico. En funcionamiento, suele ser más alta que la temperatura de la caja del paquete y la diferencia de temperatura es igual al flujo de calor multiplicado por la resistencia térmica. Convección libre (convección natural): Radiación (radiación): Aire forzado (enfriamiento de gas): Líquido forzado (enfriamiento de gas): Evaporación de líquido: Superficie Entorno EntornoConsideraciones simples comunes para el diseño térmico:1 Se deben utilizar métodos de enfriamiento simples y confiables, como la conducción de calor, la convección natural y la radiación, para reducir costos y fallas.2 Acorte la ruta de transferencia de calor tanto como sea posible y aumente el área de intercambio de calor.3 Al instalar componentes, se debe considerar completamente la influencia del intercambio de calor por radiación de los componentes periféricos, y los dispositivos termosensibles deben mantenerse alejados de la fuente de calor o encontrar una manera de utilizar las medidas protectoras del escudo térmico para aislar los componentes de la fuente de calor.4 Debe haber suficiente distancia entre la entrada de aire y el puerto de escape para evitar el reflujo de aire caliente.5 La diferencia de temperatura entre el aire entrante y el aire saliente debe ser inferior a 14 ° C.6 Cabe señalar que la dirección de la ventilación forzada y la ventilación natural debe ser lo más coherente posible.7 Los dispositivos con mucho calor deben instalarse lo más cerca posible de la superficie que sea fácil de disipar el calor (como la superficie interior de la carcasa metálica, la base metálica y el soporte metálico, etc.), y haya una buena conducción del calor por contacto entre la superficie.8 La parte de la fuente de alimentación del tubo de alta potencia y la pila del puente rectificador pertenecen al dispositivo de calefacción; es mejor instalarlo directamente en la carcasa para aumentar el área de disipación de calor. En el diseño de la placa impresa, se deben dejar más capas de cobre en la superficie de la placa alrededor del transistor de potencia más grande para mejorar la capacidad de disipación de calor de la placa inferior.9 Cuando utilice convección libre, evite utilizar disipadores de calor que sean demasiado densos.10 Se debe considerar el diseño térmico para garantizar que la capacidad de carga de corriente del cable y el diámetro del cable seleccionado deben ser adecuados para la conducción de la corriente, sin causar un aumento de temperatura y una caída de presión superiores a los permitidos.11 Si la distribución del calor es uniforme, el espaciado de los componentes debe ser uniforme para que el viento fluya uniformemente a través de cada fuente de calor.12 Cuando utilice refrigeración por convección forzada (ventiladores), coloque los componentes sensibles a la temperatura más cerca de la entrada de aire.13 El uso de equipos de refrigeración por convección libre para evitar colocar otras piezas encima de las piezas de alto consumo de energía, el enfoque correcto debe ser una disposición horizontal desigual.14 Si la distribución del calor no es uniforme, los componentes deben estar escasamente dispuestos en el área con gran generación de calor, y la disposición de los componentes en el área con pequeña generación de calor debe ser ligeramente más densa, o agregar una barra de desvío, para que la energía eólica puede fluir efectivamente a los dispositivos de calefacción clave.15 El principio de diseño estructural de la entrada de aire: por un lado, trate de minimizar su resistencia al flujo de aire, por otro lado, considere la prevención del polvo y considere de manera integral el impacto de los dos.16 Los componentes de consumo de energía deben estar lo más separados posible.17 Evite amontonar piezas sensibles a la temperatura o colocarlas junto a piezas que consuman mucha energía o puntos calientes.18 El uso de equipos de refrigeración por convección libre para evitar colocar otras piezas encima de las piezas de alto consumo de energía, la práctica correcta debe ser una disposición horizontal desigual.
Detección de estrés cíclico de temperatura (1)Detección de estrés ambiental (ESS)La detección de tensiones es el uso de técnicas de aceleración y tensión ambiental bajo el límite de resistencia de diseño, tales como: quemado, ciclos de temperatura, vibración aleatoria, ciclo de energía... Al acelerar la tensión, surgen los defectos potenciales en el producto [material potencial de las piezas]. Defectos, defectos de diseño, defectos de proceso, defectos de proceso], y eliminar tensiones residuales electrónicas o mecánicas, así como eliminar condensadores perdidos entre placas de circuitos multicapa, la etapa de muerte temprana del producto en la curva del baño se elimina y repara con anticipación. , de modo que el producto a través de un cribado moderado, guarde el período normal y el período de declive de la curva de la bañera para evitar que el producto en el proceso de uso, la prueba de estrés ambiental a veces conduzca a fallas, lo que resulta en pérdidas innecesarias. Aunque el uso de la detección de tensión ESS aumentará el costo y el tiempo, para mejorar el rendimiento de entrega del producto y reducir la cantidad de reparaciones, existe un efecto significativo, pero se reducirá el costo total. Además, también se mejorará la confianza del cliente, generalmente para las piezas electrónicas los métodos de detección de tensión son prequemado, ciclo de temperatura, alta temperatura, baja temperatura, el método de detección de tensión de la placa de circuito impreso PCB es el ciclo de temperatura, por el costo electrónico del La detección de tensión es: precombustión de energía, ciclos de temperatura, vibración aleatoria, además de que la detección de tensión en sí es una etapa del proceso, en lugar de una prueba, la detección es el 100% del procedimiento del producto.Etapa aplicable del producto de detección de estrés: Etapa de I+D, etapa de producción en masa, antes de la entrega (la prueba de detección se puede realizar en componentes, dispositivos, conectores y otros productos o en todo el sistema de la máquina, según los diferentes requisitos, puede tener diferentes tensiones de detección)Comparación de detección de estrés:a. La detección de tensión de precombustión (quemado) a alta temperatura constante es el método actual comúnmente utilizado en la industria de TI electrónica para precipitar defectos de componentes electrónicos, pero este método no es adecuado para detectar piezas (PCB, IC, resistencia, condensador), según las estadísticas. , la cantidad de empresas en los Estados Unidos que utilizan ciclos de temperatura para cribar piezas es cinco veces mayor que la cantidad de empresas que utilizan temperaturas altas constantes para cribar componentes.B. GJB/DZ34 indica la proporción del ciclo de temperatura y los defectos de selección aleatoria de la criba vibratoria, la temperatura representó aproximadamente el 80%, la vibración representó aproximadamente el 20% de los defectos en varios productos.do. En Estados Unidos se ha realizado una encuesta en 42 empresas; la tensión por vibración aleatoria puede detectar entre el 15 y el 25% de los defectos, mientras que el ciclo de temperatura puede detectar entre el 75 y el 85%, si la combinación de ambos puede alcanzar el 90%.d. La proporción de tipos de defectos de productos detectados por ciclos de temperatura: margen de diseño insuficiente: 5 %, errores de producción y mano de obra: 33 %, piezas defectuosas: 62 %Descripción de la inducción de fallas de detección de tensión cíclica de temperatura:La causa de la falla del producto inducida por los ciclos de temperatura es: cuando la temperatura cambia dentro de las temperaturas extremas superior e inferior, el producto produce expansión y contracción alternadas, lo que resulta en estrés térmico y deformación en el producto. Si hay una escalera térmica transitoria (falta de uniformidad de temperatura) dentro del producto, o los coeficientes de expansión térmica de los materiales adyacentes dentro del producto no coinciden entre sí, estas tensiones y deformaciones térmicas serán más drásticas. Esta tensión y tensión son mayores en el defecto, y este ciclo hace que el defecto crezca tanto que eventualmente puede causar fallas estructurales y generar fallas eléctricas. Por ejemplo, un orificio pasante galvanizado agrietado eventualmente se agrieta completamente a su alrededor, provocando un circuito abierto. El ciclo térmico permite soldar y recubrir orificios en placas de circuito impreso... La detección de tensión cíclica de temperatura es especialmente adecuada para productos electrónicos con estructura de placa de circuito impreso.El modo de fallo desencadenado por el ciclo de temperatura o el impacto en el producto es el siguiente:a. La expansión de varias grietas microscópicas en el revestimiento, material o alambre.b. Aflojar las uniones mal adheridasdo. Aflojar uniones mal conectadas o remachadasd. Relaje los accesorios prensados con tensión mecánica insuficiente.mi. Aumenta la resistencia de contacto de juntas de soldadura de mala calidad o provoca un circuito abierto.F. Partículas, contaminación química.gramo. Fallo del selloh. Problemas de embalaje, como la unión de revestimientos protectores.i. Cortocircuito o circuito abierto del transformador y bobina.j. El potenciómetro está defectuoso.k. Mala conexión de soldadura y puntos de soldadura.l. Contacto de soldadura en fríometro. Tablero multicapa debido a manejo inadecuado de circuito abierto, cortocircuitonorte. Cortocircuito del transistor de potencia.o. Condensador, transistor defectuosopag. Fallo del circuito integrado de doble filaq. Una caja o cable que está a punto de sufrir un cortocircuito debido a daños o un montaje inadecuado.r. Roturas, roturas, rayaduras de material por manipulación inadecuada… Etc.s. piezas y materiales fuera de toleranciat. resistencia rota debido a la falta de revestimiento amortiguador de caucho sintéticoUd. El pelo del transistor participa en la conexión a tierra de la tira metálica.v. Ruptura de la junta de aislamiento de mica, lo que provoca un cortocircuito en el transistorw. Una fijación incorrecta de la placa metálica de la bobina de regulación provoca una salida irregularincógnita. El tubo de vacío bipolar está abierto internamente a baja temperatura.y. Cortocircuito indirecto de la bobinaz. Terminales sin conexión a tierraa1. Deriva de parámetros de componentesa2. Los componentes están instalados incorrectamentea3. Componentes mal utilizadosa4. Fallo del selloIntroducción de parámetros de tensión para la detección de tensión cíclica de temperatura:Los parámetros de tensión de la detección de tensión cíclica de temperatura incluyen principalmente lo siguiente: rango extremo de temperatura alta y baja, tiempo de permanencia, variabilidad de temperatura, número de cicloRango extremo de temperatura alta y baja: cuanto mayor sea el rango de temperatura extrema alta y baja, menos ciclos se requieren, menor será el costo, pero no puede exceder el producto que puede soportar el límite, no causa un nuevo principio de falla, la diferencia entre el Los límites superior e inferior de cambio de temperatura no son inferiores a 88°C, el rango típico de cambio es de -54°C a 55°C.Tiempo de permanencia: Además, el tiempo de permanencia no puede ser demasiado corto, de lo contrario será demasiado tarde para que el producto bajo prueba produzca cambios de tensión de expansión y contracción térmica, en cuanto al tiempo de permanencia, el tiempo de permanencia de diferentes productos es diferente, usted Puede consultar los requisitos de especificación relevantes.Número de ciclos: En cuanto al número de ciclos de detección de tensión cíclica de temperatura, también se determina considerando las características del producto, la complejidad, los límites superior e inferior de temperatura y la tasa de detección, y el número de detección no debe excederse, de lo contrario causará daño innecesario al producto y no puede mejorar la tasa de detección. El número de ciclos de temperatura varía de 1 a 10 ciclos [cribado ordinario, cribado primario] a 20 a 60 ciclos [cribado de precisión, cribado secundario], para la eliminación de los defectos de mano de obra más probables, se pueden eliminar eficazmente entre 6 y 10 ciclos. , además de la efectividad del ciclo de temperatura, depende principalmente de la variación de temperatura de la superficie del producto, más que de la variación de temperatura dentro de la caja de prueba.Hay siete parámetros principales que influyen en el ciclo de temperatura:(1) Rango de temperatura(2) Número de ciclos(3) Tasa de temperatura de Chang(4) Tiempo de permanencia(5) Velocidades del flujo de aire(6) Uniformidad del estrés(7) Prueba de funcionamiento o no (Condición de funcionamiento del producto)
AEC-Q100: Mecanismo de falla basado en la certificación de prueba de esfuerzo de circuito integradoCon el progreso de la tecnología electrónica automotriz, existen muchos sistemas complicados de control de gestión de datos en los automóviles actuales y, a través de muchos circuitos independientes, para transmitir las señales requeridas entre cada módulo, el sistema dentro del automóvil es como la "arquitectura maestro-esclavo" de En la red informática, en la unidad de control principal y en cada módulo periférico, las piezas electrónicas del automóvil se dividen en tres categorías. Incluyendo tres categorías de IC, semiconductores discretos y componentes pasivos, para garantizar que estos componentes electrónicos automotrices cumplan con los más altos estándares de anquan automotriz, la Asociación Estadounidense de Electrónica Automotriz (AEC, el Consejo de Electrónica Automotriz es un conjunto de estándares [AEC-Q100] diseñado para piezas activas [microcontroladores y circuitos integrados...] y [[AEC-Q200] diseñado para componentes pasivos, que especifica la calidad y confiabilidad del producto que se debe lograr para las piezas pasivas. Aec-q100 es el estándar de prueba de confiabilidad del vehículo formulado. por la organización AEC, que es una entrada importante para los fabricantes de 3C e IC en el módulo de fábrica de automóviles internacional, y también una tecnología importante para mejorar la calidad de confiabilidad de IC de Taiwán. Además, la fábrica de automóviles internacional ha aprobado el estándar anquan (ISO). -26262). AEC-Q100 es el requisito básico para pasar este estándar.Lista de piezas electrónicas automotrices necesarias para pasar AECQ-100:Memoria desechable para automóviles, regulador reductor de fuente de alimentación, fotoacoplador para automóviles, sensor de acelerómetro de tres ejes, dispositivo de video jiema, rectificador, sensor de luz ambiental, memoria ferroeléctrica no volátil, IC de administración de energía, memoria flash integrada, regulador CC/CC, vehículo dispositivo de comunicación de red de calibre, IC de controlador LCD, amplificador diferencial de fuente de alimentación única, interruptor de proximidad capacitivo apagado, controlador LED de alto brillo, conmutador asíncrono, IC de 600 V, IC de GPS, chip del sistema avanzado de asistencia al conductor ADAS, receptor GNSS, amplificador frontal GNSS. .. Esperemos.Categorías y pruebas AEC-Q100:Descripción: Especificación AEC-Q100 7 categorías principales con un total de 41 pruebasGrupo A- PRUEBAS DE ESTRÉS AMBIENTAL ACELERADO consta de 6 pruebas: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGrupo B- PRUEBAS DE SIMULACIÓN ACELERADA DE POR VIDA consta de tres pruebas: HTOL, ELFR y EDRPRUEBAS DE INTEGRIDAD DEL ENSAMBLAJE DEL PAQUETE consta de 6 pruebas: WBS, WBP, SD, PD, SBS, LIGrupo D- La prueba de CONFIABILIDAD DE FABRICACIÓN DE Matrices consta de 5 PRUEBAS: EM, TDDB, HCI, NBTI, SMEl grupo PRUEBAS DE VERIFICACIÓN ELÉCTRICA consta de 11 pruebas, entre las que se incluyen TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC y SER.PRUEBAS DE DETECCIÓN DE defectos F del grupo: 11 pruebas, que incluyen: PAT, SBALas PRUEBAS DE INTEGRIDAD DEL PAQUETE DE CAVIDAD constan de 8 pruebas, que incluyen: MS, VFV, CA, GFL, DROP, LT, DS, IWVBreve descripción de los elementos de prueba:CA: Olla a presiónCA: aceleración constanteCDM: modo de dispositivo cargado con descarga electrostáticaCHAR: indica la descripción de la característicaGOTA: El paquete caeDS: prueba de corte de virutaED: Distribución eléctricaEDR: durabilidad del almacenamiento no propenso a fallas, retención de datos, vida útilELFR: Tasa de fracaso en la vida tempranaEM: electromigraciónEMC: Compatibilidad electromagnéticaFG: nivel de fallaGFL: prueba de fuga de aire gruesa/finaGL: Fuga en la compuerta causada por efecto termoeléctricoHBM: indica el modo humano de descarga electrostáticaHTSL: vida útil en almacenamiento a alta temperaturaHTOL: vida útil a alta temperaturaHCL: efecto de inyección de portador calienteIWV: Prueba higroscópica internaLI: integridad del pinLT: Prueba de torsión de la placa de cubiertaLU: efecto de bloqueoMM: indica el modo mecánico de descarga electrostáticaMS: Choque mecánicoNBTI: inestabilidad de la temperatura del sesgo ricoPAT: Prueba de promedio de procesoPC: preprocesamientoPD: tamaño físicoPTC: ciclo de temperatura de potenciaSBA: Análisis estadístico de rendimientoSBS: corte de bolas de estañoSC: característica de cortocircuitoSD: soldabilidadSER: Tasa de error suaveSM: Migración de estrésTC: ciclo de temperaturaTDDB: Tiempo de ruptura dieléctricaTEST: Parámetros de función antes y después de la prueba de estrésTH: humedad y calor sin prejuiciosTHB, HAST: Pruebas de temperatura, humedad o estrés altamente acelerado con sesgo aplicadoUHST: prueba de estrés de alta aceleración sin sesgosVFV: vibración aleatoriaWBS: corte de alambre de soldaduraWBP: tensión del alambre de soldaduraCondiciones de prueba de temperatura y humedad acabado:THB (temperatura y humedad con polarización aplicada, según JESD22 A101): 85℃/85%RH/1000h/biasHAST (prueba de esfuerzo de alta aceleración según JESD22 A110): 130 ℃/85 % H.R./96 h/bias, 110 ℃/85 % H.R./264 h/biasOlla a presión AC, según JEDS22-A102:121 ℃/100%H.R./96hUHST Prueba de esfuerzo de alta aceleración sin sesgo, según JEDS22-A118, equipo: HAST-S): 110 ℃/85 % R.H./264 hTH calor húmedo sin polarización, según JEDS22-A101, equipo: THS): 85 ℃/85 % R.H./1000 hTC(ciclo de temperatura, según JEDS22-A104, equipo: TSK, TC):Nivel 0: -50 ℃ ← → 150 ℃/2000 ciclosNivel 1: -50 ℃ ← → 150 ℃/1000 ciclosNivel 2: -50 ℃ ← → 150 ℃/500 ciclosNivel 3: -50 ℃ ← → 125 ℃/500 ciclosNivel 4: -10 ℃ ← → 105 ℃/500 ciclosPTC (ciclo de temperatura de potencia, según JEDS22-A105, equipo: TSK):Nivel 0: -40 ℃ ← → 150 ℃/1000 ciclosNivel 1: -65 ℃ ← → 125 ℃/1000 ciclosNivel 2 a 4: -65 ℃ ← → 105 ℃/500 ciclosHTSL (vida útil de almacenamiento a alta temperatura, JEDS22-A103, dispositivo: HORNO):Piezas del paquete de plástico: Grado 0:150 ℃/2000hGrado 1:150 ℃/1000hGrado 2 a 4:125 ℃/1000 h o 150 ℃/5000 hPiezas del paquete cerámico: 200 ℃/72 hHTOL (vida útil a alta temperatura, JEDS22-A108, equipo: HORNO):Grado 0:150 ℃/1000hClase 1: 150 ℃/408 h o 125 ℃/1000 hGrado 2: 125 ℃/408 h o 105 ℃/1000 hGrado 3: 105 ℃/408 h o 85 ℃/1000 hClase 4: 90 ℃/408 h o 70 ℃/1000 h ELFR (Tasa de fracaso en la vida temprana, AEC-Q100-008) : Los dispositivos que pasan esta prueba de estrés se pueden usar para otras pruebas de estrés, se pueden usar datos generales y las pruebas antes y después de ELFR se realizan en condiciones de temperatura suave y alta.
Prueba de rotura transitoria del ciclo de temperatura de la placa VMR
La prueba del ciclo de temperatura es uno de los métodos más utilizados para la prueba de confiabilidad y vida útil de materiales de soldadura sin plomo y piezas SMD. Evalúa las piezas adhesivas y las uniones de soldadura en la superficie de SMD, y causa deformación plástica y fatiga mecánica de los materiales de las uniones de soldadura bajo el efecto de fatiga del ciclo de temperatura fría y caliente con variabilidad de temperatura controlada, para comprender los peligros potenciales y los factores de falla. de uniones de soldadura y SMD. El diagrama de cadena tipo margarita está conectado entre las piezas y las uniones de soldadura. El proceso de prueba detecta el encendido y apagado entre líneas, piezas y uniones de soldadura a través del sistema de medición de rotura instantánea de alta velocidad, que satisface la demanda de pruebas de confiabilidad de conexiones eléctricas para evaluar si las uniones de soldadura, bolas de estaño y las piezas fallan. Esta prueba no es realmente simulada. Su propósito es aplicar una tensión severa y acelerar el factor de envejecimiento en el objeto que se va a probar para confirmar si el producto está diseñado o fabricado correctamente y luego evaluar la vida útil de la fatiga térmica de las uniones de soldadura de los componentes. La prueba de confiabilidad de la conexión eléctrica de ruptura instantánea de alta velocidad se ha convertido en un eslabón clave para garantizar el funcionamiento normal del sistema electrónico y evitar la falla de la conexión eléctrica causada por la falla del sistema inmaduro. Los cambios de resistencia durante un corto período de tiempo se observaron bajo cambios acelerados de temperatura y pruebas de vibración.
Objetivo:
1. Asegurar que los productos diseñados, fabricados y ensamblados cumplan con los requisitos predeterminados.
2. Relajación de la tensión de fluencia de la junta de soldadura y falla por fractura SMD causada por la diferencia de expansión térmica
3. La temperatura máxima de prueba del ciclo de temperatura debe ser 25 ℃ menor que la temperatura Tg del material de PCB, para evitar más de un mecanismo de daño del producto de prueba sustituto.
4. La variabilidad de temperatura a 20 ℃/min es un ciclo de temperatura, y la variabilidad de temperatura por encima de 20 ℃/min es un choque de temperatura
5. El intervalo de medición dinámica de la junta de soldadura no supera 1 min.
6. El tiempo de residencia a alta y baja temperatura para la determinación de fallas debe medirse en 5 golpes.
Requisitos:
1. El tiempo de temperatura total del producto de prueba está dentro del rango de la temperatura máxima nominal y la temperatura mínima, y la duración del tiempo de residencia es muy importante para la prueba acelerada, porque el tiempo de residencia no es suficiente durante la prueba acelerada. , lo que hará que el proceso de fluencia sea incompleto
2. La temperatura residente debe ser superior a la temperatura Tmax e inferior a la temperatura Tmin
Consulte la lista de especificaciones:
IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117, SJR-01