Software de construcción y sistema de cámara de prueba de choque térmico de dos zonasConstrucción de una cámara de prueba de choque térmico de dos zonas:1, modo de construcción de la cámara de pruebas ambientales:Cámara de pruebas ambientales se compone de una cámara de prueba de alta temperatura ubicada en el extremo superior, una cámara de prueba de baja temperatura ubicada debajo, un gabinete congelador ubicado en la parte posterior y una cámara de control de electrodomésticos (software del sistema) ubicada a la derecha. De esta manera, la carcasa ocupa un área pequeña, estructura compacta, diseño de apariencia hermosa, la unidad del congelador se coloca en un cuerpo de cámara del generador separado, para reducir la vibración y el ruido del funcionamiento de la unidad del congelador en el daño de la cámara de prueba ambiental. además de la instalación y mantenimiento del grupo electrógeno, el panel de operación de electrodomésticos se coloca en el panel derecho de la cámara de pruebas ambientales para facilitar la operación real;2, Materias primas de la superficie de la carcasa: placa laminada en frío, solución de pulverización de polvo electrostático de superficie;3, materias primas de la cavidad de la carcasa: placa de acero inoxidable importada (SUS304);4, material de aislamiento térmico: espuma de éster de poliamina de plástico duro resistente al calor + placa de espuma de vidrio;5, la puerta: puerta simple, equipada con equipo de calentamiento de tira de caucho de sellado y sellado de caucho de silicona doble, debajo de la zona de calentamiento de temperatura autolimitada, para evitar la esencia del experimento y las heladas;6, rejilla de prueba: mueva hacia arriba y hacia abajo la rejilla de prueba de placa de acero inoxidable deslizante izquierda y derecha. El cilindro neumático de doble efecto muestra una fuerza motriz estable y simétrica. El dispositivo de posicionamiento del bastidor de prueba utiliza un interruptor de límite activado por un campo electromagnético;7, Orificio de instalación del cable: el extremo superior del bastidor de prueba y la parte superior de la cámara de prueba de alta temperatura están provistos de un tubo telescópico para pasar el cable.Software del sistema de aire acondicionado de la cámara de prueba de choque térmico de dos zonas: 1, método de control de gas: sistema de circulación forzada, ventilación natural, método de control de temperatura equilibrada (BTC). El método se refiere a la unidad de refrigeración en la condición de operación continua, el sistema de control automático de acuerdo con el punto de temperatura establecido de acuerdo con los resultados de salida automática y operativa PID para manipular la salida cardíaca del calentador eléctrico, la UI final excederá este equilibrio estable. .2, equipo del sistema de circulación de gas: sala de aire acondicionado central integrada, canal de modo de suministro de aire y extractor de eje corto con placa de acero inoxidable, aplicación de unidad de refrigeración y software del sistema de ajuste de energía cinética, de acuerdo con el extractor para realizar un calor razonable intercambiador, más que el propósito de mantener el cambio de temperatura. Según el flujo de aire mejorado del gas, se mejoran el flujo total de gas y la capacidad de trabajo del intercambiador de calor con el calentador eléctrico y el enfriador de superficie.3, método de enfriamiento evaporativo: intercambiador de calor de aire tipo aleta.4. Método de calentamiento a gas: seleccione calentador eléctrico de alambre de níquel-cromo.
¿Cómo cambiar el aceite refrigerante de la cámara de prueba de choque térmico?Cámara de prueba de choque térmico Es un equipo de prueba necesario para las industrias de metal, plástico, caucho, electrónica y otros materiales, que se utiliza para probar la estructura del material o los materiales compuestos, en un instante en un entorno continuo de temperatura extremadamente alta y temperatura extremadamente baja para soportar el grado de cambios químicos o Daño físico causado por la expansión térmica y contracción de la muestra en el menor tiempo. La cámara de prueba de choque térmico cumple con el método de prueba: GB/T2423.1.2, GB/T10592-2008, prueba de choque térmico GJB150.3.En la cámara de prueba de choque térmico, si el compresor es un compresor de pistón semicerrado en funcionamiento durante 500 horas, es necesario observar los cambios de temperatura y presión del aceite congelado, y si el aceite congelado está descolorido, debe ser reemplazado. . Después de la operación inicial de la unidad compresora durante 2000 horas, se debe mantener dentro de un límite de tiempo la operación acumulada de tres años o el tiempo de operación de más de 10,000 a 12,000 horas y se debe reemplazar el aceite enfriado.El reemplazo del aceite refrigerado del compresor de pistón semicerrado en la cámara de prueba de choque térmico se puede realizar de acuerdo con los siguientes pasos:1. Cierre la válvula de cierre de escape de alta presión y succión de baja presión de la cámara de prueba de choque térmico y luego atornille el tapón de aceite, el tapón de aceite generalmente está en la parte inferior del cárter y luego limpie el aceite congelado y limpie el filtro.2. Utilice la aguja de la válvula de gas de impacto de baja presión para soplar nitrógeno en el puerto de aceite y luego utilice la presión para descargar el aceite residual en el cuerpo, instale un filtro limpio y apriete el tapón de aceite.3. Conecte el tubo de baja presión lleno con manómetro de flúor a la aguja de la válvula de proceso de baja presión con una bomba de vacío para bombear el cárter a presión negativa, y luego retire el otro tubo de flúor por separado, coloque un extremo en el aceite enfriado y coloque el el otro extremo en la aguja de la válvula de succión de baja presión de la bomba de aceite. El aceite enfriado es aspirado hacia el cárter debido a la presión negativa y se agrega hasta una posición ligeramente superior al límite inferior de la línea del espejo de aceite.4. Después de la inyección, apriete la columna de proceso o retire el tubo de llenado de flúor y luego conecte el manómetro de flúor para aspirar el compresor.5. Después de aspirar, es necesario abrir la válvula de cierre de alta y baja presión del compresor para comprobar si se ha producido una fuga de refrigerante.6. Abra la unidad de la cámara de prueba de choque térmico para verificar la lubricación del compresor y el nivel de aceite del espejo de aceite; el nivel de aceite no puede ser inferior a una cuarta parte del espejo.Lo anterior es cómo reemplazar el aceite refrigerante del compresor de pistón semicerrado en la cámara de prueba de choque térmico. Debido a que el aceite refrigerante tiene higroscopio, el proceso de reemplazo debe reducir la entrada de aire al sistema y al contenedor de almacenamiento de aceite. Si se inyecta demasiado aceite envejecido en frío, existe el riesgo de que se produzca un shock de líquido.
Prueba de ciclos térmicos (TC) y prueba de choque térmico (TS)Prueba de ciclo térmico (TC):En el ciclo de vida del producto, puede enfrentar diversas condiciones ambientales, lo que hace que el producto aparezca en la parte vulnerable, lo que provoca daños o fallas en el producto y luego afecta la confiabilidad del producto. Se realiza una serie de pruebas cíclicas de alta y baja temperatura sobre el cambio de temperatura a una tasa de variación de temperatura de 5 a 15 grados por minuto, lo que no es una simulación real de la situación real. Su propósito es aplicar tensión a la pieza de prueba, acelerar el factor de envejecimiento de la pieza de prueba, de modo que la pieza de prueba pueda causar daños al equipo y componentes del sistema bajo factores ambientales, para determinar si la pieza de prueba está diseñada correctamente o fabricado. Los más comunes son:Función eléctrica del producto.El lubricante se deteriora y pierde lubricación.Pérdida de resistencia mecánica, lo que resulta en grietas y grietas.El deterioro del material provoca la acción química. Ámbito de aplicación:Prueba de simulación del entorno del producto del módulo/sistemaPrueba de conflicto de producto del módulo/sistemaPCB/PCBA/Prueba de tensión acelerada de junta de soldadura (ALT/AST)... Prueba de choque térmico (TS):En el ciclo de vida del producto, puede enfrentar diversas condiciones ambientales, lo que hace que el producto aparezca en la parte vulnerable, lo que provoca daños o fallas en el producto y luego afecta la confiabilidad del producto. Las pruebas de choque a altas y bajas temperaturas en condiciones extremadamente duras con cambios rápidos de temperatura con una variabilidad de temperatura de 40 grados por minuto no son realmente simuladas. Su propósito es aplicar una tensión severa a la pieza de prueba para acelerar el factor de envejecimiento de la pieza de prueba, de modo que la pieza de prueba pueda causar daños potenciales al equipo y componentes del sistema bajo factores ambientales, para determinar si la pieza de prueba está correctamente diseñado o fabricado. Los más comunes son:Función eléctrica del producto.La estructura del producto está dañada o se reduce la resistencia.Craqueo de estaño de componentes.El deterioro del material provoca la acción química.Daño del sello Especificaciones de la máquina:Rango de temperatura: -60 °C a +150 °CTiempo de recuperación: < 5 minutosDimensión interior: 370*350*330 mm (D×W×H) Ámbito de aplicación:Prueba de aceleración de confiabilidad de PCBPrueba de vida acelerada del módulo eléctrico del vehículoPrueba acelerada de piezas LED... Efectos de los cambios de temperatura en los productos:La capa de recubrimiento de los componentes se cae, los materiales de encapsulado y los compuestos de sellado se agrietan, incluso la carcasa de sellado se agrieta y los materiales de relleno se filtran, lo que provoca que el rendimiento eléctrico de los componentes disminuya.Productos compuestos de diferentes materiales, cuando la temperatura cambia, el producto no se calienta uniformemente, lo que resulta en deformación del producto, grietas en los productos de sellado, vidrio o cristalería y roturas de ópticas;La gran diferencia de temperatura hace que la superficie del producto se condense o se congele a baja temperatura, se evapore o se derrita a alta temperatura, y el resultado de dicha acción repetida conduce y acelera la corrosión del producto. Efectos ambientales del cambio de temperatura:Vidrios rotos y equipos ópticos.La parte móvil está atascada o suelta.La estructura crea separación.Cambios eléctricos.Falla eléctrica o mecánica debido a condensación o congelación rápida.Fractura de forma granular o estriada.Diferentes características de contracción o expansión de diferentes materiales.El componente está deformado o roto.Grietas en revestimientos superficiales.Fuga de aire en el compartimento de contención.
Prueba de confiabilidad del tubo de calorLa tecnología de tubo de calor es un elemento de transferencia de calor llamado "tubo de calor" inventado por G.M. rover del Laboratorio Nacional de Los Álamos en 1963, que aprovecha al máximo el principio de conducción de calor y las propiedades de rápida transferencia de calor del medio de refrigeración, y transfiere el calor del objeto calefactor rápidamente a la fuente de calor a través del tubo de calor. Su conductividad térmica supera la de cualquier metal conocido. La tecnología de tubos de calor se ha utilizado ampliamente en las industrias aeroespacial, militar y otras, desde que se introdujo en la industria de fabricación de radiadores, lo que hizo que la gente cambiara la idea de diseño del radiador tradicional y se deshiciera del modo único de disipación de calor que simplemente depende de Motor de alto volumen de aire para obtener un mejor efecto de disipación de calor. El uso de la tecnología de tubo de calor hace que el radiador, incluso si se utiliza un motor de baja velocidad y bajo volumen de aire, también pueda obtener resultados satisfactorios, de modo que el problema del ruido plagado por el calor de refrigeración por aire se ha resuelto bien, abriendo un nuevo mundo en el Industria de disipación de calor.Condiciones de prueba de confiabilidad del tubo de calor:Prueba de detección de estrés a alta temperatura: 150 ℃/24 horasPrueba de ciclos de temperatura:120 ℃ (10 min) ← → -30 ℃ (10 min), rampa: 0,5 ℃, 10 ciclos 125 ℃ (60 min) ← → -40 ℃ (60 min), rampa: 2,75 ℃, 10 ciclosPrueba de choque térmico:120 ℃ (2 min) ← → -30 ℃ (2 min), 250 ciclos125 ℃ (5 min) ← → -40 ℃ (5 min), 250 ciclos100 ℃ (5 min) ← → -50 ℃ (5 min), 2000 ciclos (verifique una vez después de 200 ciclos)Prueba de alta temperatura y alta humedad:85 ℃/85% HR/1000 horasPrueba de envejecimiento acelerado:110 ℃/85 % HR/264 hOtros elementos de prueba de tubos de calor:Prueba de niebla salina, prueba de resistencia (explosión), prueba de tasa de fuga, prueba de vibración, prueba de vibración aleatoria, prueba de choque mecánico, prueba de combustión de helio, prueba de rendimiento, prueba de túnel de viento
Fiabilidad del sustrato cerámicoPCB cerámico (sustrato cerámico) se refiere a una placa de proceso especial donde una lámina de cobre se une directamente a la superficie (simple o doble) de un sustrato cerámico de alúmina (Al2O3) o nitruro de aluminio (AlN) a alta temperatura. El sustrato compuesto ultrafino tiene un excelente rendimiento de aislamiento eléctrico, alta conductividad térmica, excelente soldadura y alta resistencia a la adhesión, y puede grabarse en una variedad de gráficos como placas PCB, con una gran capacidad de carga de corriente. Por lo tanto, el sustrato cerámico se ha convertido en el material básico de la tecnología de estructura de circuitos electrónicos de alta potencia y la tecnología de interconexión, que es adecuado para productos con alto valor calórico (LED de alto brillo, energía solar), y su excelente resistencia a la intemperie se puede aplicar a ambientes exteriores hostiles.Principales productos de aplicación: Placa portadora LED de alta potencia, luces LED, farolas LED, inversor solarCaracterísticas del sustrato cerámico:Estructura: Excelente resistencia mecánica, baja deformación, coeficiente de expansión térmica cercano al de la oblea de silicio (nitruro de aluminio), alta dureza, buena procesabilidad, alta precisión dimensionalClima: Adecuado para ambientes de alta temperatura y humedad, alta conductividad térmica, buena resistencia al calor, resistencia a la corrosión y al desgaste, resistencia a los rayos UV y al amarillamiento.Química: Sin plomo, no tóxico, buena estabilidad químicaEléctrico: alta resistencia de aislamiento, fácil metalización, gráficos de circuitos y fuerte adherencia.Mercado: Materiales abundantes (arcilla, aluminio), fáciles de fabricar, precio bajoComparación de las características térmicas del material de PCB (conductividad):Tablero de fibra de vidrio (PCB tradicional): 0,5 W/mK, sustrato de aluminio: 1 ~ 2,2 W/mK, sustrato cerámico: 24 [alúmina] ~ 170 [nitruro de aluminio] W/mKCoeficiente de transferencia de calor del material (unidad W/mK):Resina: 0,5, alúmina: 20-40, carburo de silicio: 160, aluminio: 170, nitruro de aluminio: 220, cobre: 380, diamante: 600Clasificación del proceso de sustrato cerámico:Según la línea, el proceso de sustrato cerámico se divide en: película delgada, película gruesa, cerámica multicapa cocida a baja temperatura (LTCC)Proceso de película delgada (DPC): control preciso del diseño del circuito de componentes (ancho de línea y espesor de película)Proceso de película gruesa (Película gruesa): para proporcionar disipación de calor y condiciones climáticas.Cerámica multicapa cocida a baja temperatura (HTCC): el uso de cerámicas de vidrio con baja temperatura de sinterización, bajo punto de fusión, alta conductividad de características de cocción de metales preciosos, sustrato cerámico multicapa) y ensamblaje.Cerámica multicapa cocida a baja temperatura (LTCC): apile varios sustratos cerámicos e incruste componentes pasivos y otros circuitos integrados.Proceso de sustrato cerámico de película delgada:· Pretratamiento → pulverización catódica → recubrimiento fotorresistente → revelado de exposición → revestimiento de líneas → eliminación de película· Laminación → prensado en caliente → desengrasado → cocción del sustrato → formación de patrones de circuito → cocción del circuito· Laminación → patrón de circuito impreso de superficie → prensado en caliente → desengrasado → co-cocción· Gráficos de circuito impreso → laminación → prensado en caliente → desengrasado → co-cocciónCondiciones de prueba de confiabilidad del sustrato cerámico:Operación de alta temperatura del sustrato cerámico: 85 ℃Funcionamiento a baja temperatura del sustrato cerámico: -40 ℃Sustrato cerámico frío y choque térmico:1. 155 ℃ (15 min) ← → -55 ℃ (15 min)/300 ciclos2. 85 ℃ (30 min) por favor - - 40 ℃ (30 min)/RAMPA: 10 min (12,5 ℃/min) / 5 ciclosAdhesión al sustrato cerámico: Pegue a la superficie del tablero con cinta 3M#600. Después de 30 segundos, rasgue rápidamente en una dirección de 90° con la superficie del tablero.Experimento de tinta roja con sustrato cerámico: hervir durante una hora, impermeableEquipo de prueba:1.Cámara de prueba de calor húmedo de alta y baja temperatura2. Cámara de prueba de choque térmico y frío tipo gas de tres cajas
Prueba de confiabilidad de la tabletaUna tableta, también conocida como tableta personal (Tablet PC), es una computadora personal pequeña y portátil que utiliza una pantalla táctil como dispositivo de entrada básico. Es un producto electrónico con gran movilidad y se puede ver en todas partes de la vida (como estaciones de espera, trenes, trenes de alta velocidad, cafeterías, restaurantes, salas de reuniones, suburbios, etc.). Las personas solo llevan una simple protección de abrigo o incluso ninguna, para facilitar su uso, el diseño reduce el tamaño, de modo que se puede colocar directamente en el bolsillo o bolso, mochila, pero la tableta en el proceso de movimiento también experimentará muchos cambios físicos ambientales (como temperatura, humedad, vibración, impacto, extrusión, etc.). Etc.) y daños naturales (como luz ultravioleta, luz solar, polvo, niebla salina, gotas de agua... También causará lesiones artificiales no intencionadas o funcionamiento anormal y incorrecto, e incluso causará fallas y daños (como: productos químicos domésticos, sudoración de manos, caídas, inserción y extracción excesiva de terminales, fricción en los bolsillos, clavos de cristal... Estos acortarán la vida útil de la tableta, para garantizar la confiabilidad del producto y extender la vida útil para mejorar, debemos llevar Realice una serie de proyectos de pruebas de confiabilidad ambiental en la tableta, las siguientes pruebas relevantes para su referencia.Descripción del proyecto de prueba ambiental:Simule varios entornos hostiles y evaluaciones de confiabilidad utilizadas por tabletas para probar si su rendimiento cumple con los requisitos; Incluye principalmente operación a alta y baja temperatura y almacenamiento a alta y baja temperatura, temperatura y condensación, ciclo de temperatura y choque, prueba de combinación de humedad y calor, ultravioleta, luz solar, goteo, polvo, niebla salina y otras pruebas.Rango de temperatura de funcionamiento: 0 ℃ ~ 35 ℃/5% ~ 95% RHRango de temperatura de almacenamiento: -10 ℃ ~ 50 ℃/10% ~ 90% RHPrueba de funcionamiento a baja temperatura: -10 ℃/2 h/funcionamiento eléctricoPrueba de funcionamiento a alta temperatura: 40 ℃/8 h/todo en funcionamientoPrueba de baja temperatura de almacenamiento: -20 ℃/96 h/apagadoPrueba de alta temperatura de almacenamiento: 60 ℃/96 h/apagadoPrueba de alta temperatura de almacenamiento del vehículo: 85 ℃/96 h/apagadoChoque de temperatura: -40 ℃ (30 min) ← → 80 ℃ (30 min)/10 ciclosPrueba de calor húmedo: 40 ℃/95 % H.R./48 h/energía en esperaPrueba de ciclo caliente y húmedo: 40 ℃/95 % H.R./1 h → rampa: 1 ℃/min → -10 ℃/1 h, 20 ciclos, energía en esperaPrueba de calor húmedo: 40 ℃/95 % H.R./48 h/energía en esperaPrueba de ciclo caliente y húmedo: 40 ℃/95 % H.R./1 h → rampa: 1 ℃/min → -10 ℃/1 h, 20 ciclos, energía en esperaPrueba de resistencia a la intemperie:Simulación de las condiciones naturales más severas, prueba de efecto solar térmico, cada ciclo de 24 horas, 8 horas de exposición continua, 16 horas de oscuridad, cada ciclo cantidad de radiación de 8,96 kWh/m2, un total de 10 ciclos.Prueba de niebla salina:Solución de cloruro de sodio al 5 %/Temperatura del agua 35 °C/PH 6,5~7,2/24 h/ Apagado → Carcasa de limpieza con agua pura →55 °C/0,5 h → Prueba de funcionamiento: después de 2 horas, después de 40/80 % H.R./168 h.Prueba de goteo: De acuerdo con IEC60529, de acuerdo con la clasificación de impermeabilidad IPX2, puede evitar que las gotas de agua que caen en un ángulo de menos de 15 grados entren en la tableta y causen daños. Condiciones de prueba: caudal de agua 3 mm/min, 2,5 min en cada posición, punto de control: después de la prueba, 24 horas después, en espera durante 1 semana.Prueba de polvo:De acuerdo con IEC60529, de acuerdo con la clase de polvo IP5X, no puede evitar completamente la entrada de polvo pero no afecta el dispositivo, debe ser la acción y anquan, además de las tabletas, actualmente hay muchos productos 3C portátiles móviles personales que se usan comúnmente según los estándares de polvo. , como por ejemplo: móviles, cámaras digitales, MP3, MP4... Esperemos.Condiciones:Muestra de polvo 110 mm/3 ~ 8 h/prueba para funcionamiento dinámicoDespués de la prueba, se utiliza un microscopio para detectar si entrarán partículas de polvo en el espacio interior de la tableta.Prueba de tinción química:Confirmar los componentes externos relacionados con la tableta, confirmar la resistencia química de los productos químicos domésticos, productos químicos: protector solar, lápiz labial, crema de manos, repelente de mosquitos, aceite de cocina (aceite de ensalada, aceite de girasol, aceite de oliva... Etc.), el tiempo de prueba es de 24 horas, comprobar el color, brillo, suavidad superficial... Etc., y confirmar si hay burbujas o grietas.Prueba mecánica:Pruebe la resistencia de la estructura mecánica de la tableta y la resistencia al desgaste de los componentes clave; Incluye principalmente prueba de vibración, prueba de caída, prueba de impacto, prueba de tapón y prueba de desgaste... Etc.Prueba de caída: La altura de 130 cm, caída libre sobre la superficie lisa del suelo, cada lado cayó 7 veces, 2 lados un total de 14 veces, la tableta en estado de espera, cada caída, se verifica el funcionamiento del producto de prueba.Prueba de caída repetida: la altura de 30 cm, caída libre sobre la superficie lisa y densa de 2 cm de espesor, cada lado cayó 100 veces, cada intervalo de 2 s, 7 lados un total de 700 veces, cada 20 veces, verifique el funcionamiento del producto experimental, la tableta es en el estado de poder.Prueba de vibración aleatoria: Frecuencia 30 ~ 100Hz, 2G, axial: tres axiales. Tiempo: 1 hora en cada dirección, para un total de tres horas, la tableta está en modo de espera.Prueba de resistencia al impacto de la pantalla: Una bola de cobre de 11φ/5,5 g cayó sobre la superficie central de un objeto de 1 m a una altura de 1,8 m y una bola de acero inoxidable de 3ψ/9 g cayó a una altura de 30 cm.Durabilidad de la escritura en pantalla: más de 100.000 palabras (ancho R0,8 mm, presión 250 g)Durabilidad táctil de la pantalla: 1 millón, 10 millones, 160 millones, 200 millones de veces o más (ancho R8 mm, dureza 60°, presión 250 g, 2 veces por segundo)Prueba de prensa plana de pantalla: el diámetro del bloque de goma es de 8 mm, la velocidad de presión es de 1,2 mm/min, la dirección vertical es de 5 kg, presione la ventana 3 veces, cada vez durante 5 segundos, la pantalla debería mostrarse normalmente.Prueba de prensa plana frontal de pantalla: Toda el área de contacto, la dirección de la fuerza vertical de 25 kg, presione planamente cada lado de la tableta, durante 10 segundos, presione plana 3 veces, no debería haber ninguna anomalía.Prueba de enchufar y quitar los auriculares: Inserte el auricular verticalmente en el orificio para auriculares y luego extráigalo verticalmente. Repita esto más de 5000 veces.Prueba de conexión y extracción de E/S: La tableta está en estado de espera y el conector del terminal se desconecta, un total de más de 5000 veces.Prueba de fricción de bolsillo: Simule un bolsillo o una mochila de varios materiales, la tableta se frota repetidamente en el bolsillo 2000 veces (la prueba de fricción también agregará algunas partículas de polvo mezcladas, incluidas partículas de polvo, partículas de hierba yan, pelusa y partículas de papel para la prueba de mezcla).Prueba de dureza de la pantalla: dureza superior a la clase 7 (ASTM D 3363, JIS 5400)Prueba de impacto de pantalla: Golpea los lados más vulnerables y el centro del panel con una fuerza de más de 5㎏.
Celda Solar ConcentradoraUna célula solar de concentración es una combinación de [Concentrador Fotovoltaico]+[Fresnel Lenes]+[Sun Tracker]. Su eficiencia de conversión de energía solar puede alcanzar el 31% ~ 40,7%, aunque la eficiencia de conversión es alta, pero debido al largo tiempo hacia el sol, se ha utilizado en la industria espacial en el pasado y ahora se puede utilizar en la generación de energía. Industria con seguidor de luz solar, que no es adecuado para familias en general. El material principal de las células solares de concentración es el arseniuro de galio (GaAs), es decir, los tres materiales del grupo cinco (III-V). Los materiales de cristal de silicio generales solo pueden absorber la energía de una longitud de onda de 400 ~ 1100 nm en el espectro solar, y el concentrador es diferente de la tecnología solar de oblea de silicio, a través del semiconductor compuesto de múltiples uniones puede absorber una gama más amplia de energía del espectro solar, y el El desarrollo actual de células solares concentradoras de InGaP/GaAs/Ge de tres uniones puede mejorar en gran medida la eficiencia de conversión. La célula solar de concentración de tres uniones puede absorber energía de 300 ~ 1900 nm de longitud de onda en relación con su eficiencia de conversión que se puede mejorar considerablemente, y la resistencia al calor de las células solares de concentración es mayor que la de las células solares de tipo oblea generales.
Zona de conducción de calorConductividad térmicaEs la conductividad térmica de una sustancia, pasando de alta temperatura a baja temperatura dentro de la misma sustancia. También conocido como: conductividad térmica, conductividad térmica, conductividad térmica, coeficiente de transferencia de calor, transferencia de calor, conductividad térmica, conductividad térmica, conductividad térmica, conductividad térmica.Fórmula de conductividad térmicak = (Q/t) *L/(A*T) k: conductividad térmica, Q: calor, t: tiempo, L: longitud, A: área, T: diferencia de temperatura en unidades SI, la unidad de conductividad térmica es W/(m*K), en unidades imperiales, es Btu · pies/(h · pies2 · °F)Coeficiente de transferencia de calorEn termodinámica, ingeniería mecánica e ingeniería química, la conductividad térmica se utiliza para calcular la conducción de calor, principalmente la conducción de calor por convección o la transformación de fase entre fluido y sólido, que se define como el calor a través de la unidad de área por unidad de tiempo bajo el diferencia de temperatura unitaria, llamada coeficiente de conducción de calor de la sustancia, si el espesor de la masa de L, el valor de medición se multiplica por L, el valor resultante es el coeficiente de conductividad térmica, generalmente denotado como k.Conversión de unidades del coeficiente de conducción de calor.1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).El impacto de las altas temperaturas en los productos electrónicos:El aumento de temperatura hará que el valor de resistencia de la resistencia disminuya, pero también acortará la vida útil del capacitor; además, la alta temperatura hará que el transformador, el rendimiento de los materiales de aislamiento relacionados disminuya, la temperatura es demasiado Un nivel alto también hará que cambie la estructura de aleación de la unión de soldadura en la placa PCB: el IMC se espesa, las uniones de soldadura se vuelven quebradizas, los bigotes de estaño aumentan, la resistencia mecánica disminuye, la temperatura de la unión aumenta, la relación de amplificación de corriente del transistor aumenta rápidamente, lo que resulta en aumentos de corriente del colector. , la temperatura de la unión aumenta aún más y, finalmente, falla el componente.Explicación de los términos adecuados:Temperatura de unión: La temperatura real de un semiconductor en un dispositivo electrónico. En funcionamiento, suele ser más alta que la temperatura de la caja del paquete y la diferencia de temperatura es igual al flujo de calor multiplicado por la resistencia térmica. Convección libre (convección natural): Radiación (radiación): Aire forzado (enfriamiento de gas): Líquido forzado (enfriamiento de gas): Evaporación de líquido: Superficie Entorno EntornoConsideraciones simples comunes para el diseño térmico:1 Se deben utilizar métodos de enfriamiento simples y confiables, como la conducción de calor, la convección natural y la radiación, para reducir costos y fallas.2 Acorte la ruta de transferencia de calor tanto como sea posible y aumente el área de intercambio de calor.3 Al instalar componentes, se debe considerar completamente la influencia del intercambio de calor por radiación de los componentes periféricos, y los dispositivos termosensibles deben mantenerse alejados de la fuente de calor o encontrar una manera de utilizar las medidas protectoras del escudo térmico para aislar los componentes de la fuente de calor.4 Debe haber suficiente distancia entre la entrada de aire y el puerto de escape para evitar el reflujo de aire caliente.5 La diferencia de temperatura entre el aire entrante y el aire saliente debe ser inferior a 14 ° C.6 Cabe señalar que la dirección de la ventilación forzada y la ventilación natural debe ser lo más coherente posible.7 Los dispositivos con mucho calor deben instalarse lo más cerca posible de la superficie que sea fácil de disipar el calor (como la superficie interior de la carcasa metálica, la base metálica y el soporte metálico, etc.), y haya una buena conducción del calor por contacto entre la superficie.8 La parte de la fuente de alimentación del tubo de alta potencia y la pila del puente rectificador pertenecen al dispositivo de calefacción; es mejor instalarlo directamente en la carcasa para aumentar el área de disipación de calor. En el diseño de la placa impresa, se deben dejar más capas de cobre en la superficie de la placa alrededor del transistor de potencia más grande para mejorar la capacidad de disipación de calor de la placa inferior.9 Cuando utilice convección libre, evite utilizar disipadores de calor que sean demasiado densos.10 Se debe considerar el diseño térmico para garantizar que la capacidad de carga de corriente del cable y el diámetro del cable seleccionado deben ser adecuados para la conducción de la corriente, sin causar un aumento de temperatura y una caída de presión superiores a los permitidos.11 Si la distribución del calor es uniforme, el espaciado de los componentes debe ser uniforme para que el viento fluya uniformemente a través de cada fuente de calor.12 Cuando utilice refrigeración por convección forzada (ventiladores), coloque los componentes sensibles a la temperatura más cerca de la entrada de aire.13 El uso de equipos de refrigeración por convección libre para evitar colocar otras piezas encima de las piezas de alto consumo de energía, el enfoque correcto debe ser una disposición horizontal desigual.14 Si la distribución del calor no es uniforme, los componentes deben estar escasamente dispuestos en el área con gran generación de calor, y la disposición de los componentes en el área con pequeña generación de calor debe ser ligeramente más densa, o agregar una barra de desvío, para que la energía eólica puede fluir efectivamente a los dispositivos de calefacción clave.15 El principio de diseño estructural de la entrada de aire: por un lado, trate de minimizar su resistencia al flujo de aire, por otro lado, considere la prevención del polvo y considere de manera integral el impacto de los dos.16 Los componentes de consumo de energía deben estar lo más separados posible.17 Evite amontonar piezas sensibles a la temperatura o colocarlas junto a piezas que consuman mucha energía o puntos calientes.18 El uso de equipos de refrigeración por convección libre para evitar colocar otras piezas encima de las piezas de alto consumo de energía, la práctica correcta debe ser una disposición horizontal desigual.
AEC-Q100: Mecanismo de falla basado en la certificación de prueba de esfuerzo de circuito integradoCon el progreso de la tecnología electrónica automotriz, existen muchos sistemas complicados de control de gestión de datos en los automóviles actuales y, a través de muchos circuitos independientes, para transmitir las señales requeridas entre cada módulo, el sistema dentro del automóvil es como la "arquitectura maestro-esclavo" de En la red informática, en la unidad de control principal y en cada módulo periférico, las piezas electrónicas del automóvil se dividen en tres categorías. Incluyendo tres categorías de IC, semiconductores discretos y componentes pasivos, para garantizar que estos componentes electrónicos automotrices cumplan con los más altos estándares de anquan automotriz, la Asociación Estadounidense de Electrónica Automotriz (AEC, el Consejo de Electrónica Automotriz es un conjunto de estándares [AEC-Q100] diseñado para piezas activas [microcontroladores y circuitos integrados...] y [[AEC-Q200] diseñado para componentes pasivos, que especifica la calidad y confiabilidad del producto que se debe lograr para las piezas pasivas. Aec-q100 es el estándar de prueba de confiabilidad del vehículo formulado. por la organización AEC, que es una entrada importante para los fabricantes de 3C e IC en el módulo de fábrica de automóviles internacional, y también una tecnología importante para mejorar la calidad de confiabilidad de IC de Taiwán. Además, la fábrica de automóviles internacional ha aprobado el estándar anquan (ISO). -26262). AEC-Q100 es el requisito básico para pasar este estándar.Lista de piezas electrónicas automotrices necesarias para pasar AECQ-100:Memoria desechable para automóviles, regulador reductor de fuente de alimentación, fotoacoplador para automóviles, sensor de acelerómetro de tres ejes, dispositivo de video jiema, rectificador, sensor de luz ambiental, memoria ferroeléctrica no volátil, IC de administración de energía, memoria flash integrada, regulador CC/CC, vehículo dispositivo de comunicación de red de calibre, IC de controlador LCD, amplificador diferencial de fuente de alimentación única, interruptor de proximidad capacitivo apagado, controlador LED de alto brillo, conmutador asíncrono, IC de 600 V, IC de GPS, chip del sistema avanzado de asistencia al conductor ADAS, receptor GNSS, amplificador frontal GNSS. .. Esperemos.Categorías y pruebas AEC-Q100:Descripción: Especificación AEC-Q100 7 categorías principales con un total de 41 pruebasGrupo A- PRUEBAS DE ESTRÉS AMBIENTAL ACELERADO consta de 6 pruebas: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGrupo B- PRUEBAS DE SIMULACIÓN ACELERADA DE POR VIDA consta de tres pruebas: HTOL, ELFR y EDRPRUEBAS DE INTEGRIDAD DEL ENSAMBLAJE DEL PAQUETE consta de 6 pruebas: WBS, WBP, SD, PD, SBS, LIGrupo D- La prueba de CONFIABILIDAD DE FABRICACIÓN DE Matrices consta de 5 PRUEBAS: EM, TDDB, HCI, NBTI, SMEl grupo PRUEBAS DE VERIFICACIÓN ELÉCTRICA consta de 11 pruebas, entre las que se incluyen TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC y SER.PRUEBAS DE DETECCIÓN DE defectos F del grupo: 11 pruebas, que incluyen: PAT, SBALas PRUEBAS DE INTEGRIDAD DEL PAQUETE DE CAVIDAD constan de 8 pruebas, que incluyen: MS, VFV, CA, GFL, DROP, LT, DS, IWVBreve descripción de los elementos de prueba:CA: Olla a presiónCA: aceleración constanteCDM: modo de dispositivo cargado con descarga electrostáticaCHAR: indica la descripción de la característicaGOTA: El paquete caeDS: prueba de corte de virutaED: Distribución eléctricaEDR: durabilidad del almacenamiento no propenso a fallas, retención de datos, vida útilELFR: Tasa de fracaso en la vida tempranaEM: electromigraciónEMC: Compatibilidad electromagnéticaFG: nivel de fallaGFL: prueba de fuga de aire gruesa/finaGL: Fuga en la compuerta causada por efecto termoeléctricoHBM: indica el modo humano de descarga electrostáticaHTSL: vida útil en almacenamiento a alta temperaturaHTOL: vida útil a alta temperaturaHCL: efecto de inyección de portador calienteIWV: Prueba higroscópica internaLI: integridad del pinLT: Prueba de torsión de la placa de cubiertaLU: efecto de bloqueoMM: indica el modo mecánico de descarga electrostáticaMS: Choque mecánicoNBTI: inestabilidad de la temperatura del sesgo ricoPAT: Prueba de promedio de procesoPC: preprocesamientoPD: tamaño físicoPTC: ciclo de temperatura de potenciaSBA: Análisis estadístico de rendimientoSBS: corte de bolas de estañoSC: característica de cortocircuitoSD: soldabilidadSER: Tasa de error suaveSM: Migración de estrésTC: ciclo de temperaturaTDDB: Tiempo de ruptura dieléctricaTEST: Parámetros de función antes y después de la prueba de estrésTH: humedad y calor sin prejuiciosTHB, HAST: Pruebas de temperatura, humedad o estrés altamente acelerado con sesgo aplicadoUHST: prueba de estrés de alta aceleración sin sesgosVFV: vibración aleatoriaWBS: corte de alambre de soldaduraWBP: tensión del alambre de soldaduraCondiciones de prueba de temperatura y humedad acabado:THB (temperatura y humedad con polarización aplicada, según JESD22 A101): 85℃/85%RH/1000h/biasHAST (prueba de esfuerzo de alta aceleración según JESD22 A110): 130 ℃/85 % H.R./96 h/bias, 110 ℃/85 % H.R./264 h/biasOlla a presión AC, según JEDS22-A102:121 ℃/100%H.R./96hUHST Prueba de esfuerzo de alta aceleración sin sesgo, según JEDS22-A118, equipo: HAST-S): 110 ℃/85 % R.H./264 hTH calor húmedo sin polarización, según JEDS22-A101, equipo: THS): 85 ℃/85 % R.H./1000 hTC(ciclo de temperatura, según JEDS22-A104, equipo: TSK, TC):Nivel 0: -50 ℃ ← → 150 ℃/2000 ciclosNivel 1: -50 ℃ ← → 150 ℃/1000 ciclosNivel 2: -50 ℃ ← → 150 ℃/500 ciclosNivel 3: -50 ℃ ← → 125 ℃/500 ciclosNivel 4: -10 ℃ ← → 105 ℃/500 ciclosPTC (ciclo de temperatura de potencia, según JEDS22-A105, equipo: TSK):Nivel 0: -40 ℃ ← → 150 ℃/1000 ciclosNivel 1: -65 ℃ ← → 125 ℃/1000 ciclosNivel 2 a 4: -65 ℃ ← → 105 ℃/500 ciclosHTSL (vida útil de almacenamiento a alta temperatura, JEDS22-A103, dispositivo: HORNO):Piezas del paquete de plástico: Grado 0:150 ℃/2000hGrado 1:150 ℃/1000hGrado 2 a 4:125 ℃/1000 h o 150 ℃/5000 hPiezas del paquete cerámico: 200 ℃/72 hHTOL (vida útil a alta temperatura, JEDS22-A108, equipo: HORNO):Grado 0:150 ℃/1000hClase 1: 150 ℃/408 h o 125 ℃/1000 hGrado 2: 125 ℃/408 h o 105 ℃/1000 hGrado 3: 105 ℃/408 h o 85 ℃/1000 hClase 4: 90 ℃/408 h o 70 ℃/1000 h ELFR (Tasa de fracaso en la vida temprana, AEC-Q100-008) : Los dispositivos que pasan esta prueba de estrés se pueden usar para otras pruebas de estrés, se pueden usar datos generales y las pruebas antes y después de ELFR se realizan en condiciones de temperatura suave y alta.
Equipo de prueba ambiental de confiabilidad combinado con aplicaciones de detección y control de temperatura de múltiples pistas
El equipo de prueba ambiental incluye una cámara de prueba de temperatura y humedad constante, una cámara de prueba de choque frío y caliente, una cámara de prueba de ciclo de temperatura, un horno sin viento... Todos estos equipos de prueba se encuentran en un entorno simulado de temperatura y humedad que impactan en el producto, para averiguarlo. El proceso de diseño, producción, almacenamiento, transporte y uso puede aparecer defectos del producto, anteriormente solo se simulaba la temperatura del aire del área de prueba, pero en los nuevos estándares internacionales y las nuevas condiciones de prueba de la fábrica internacional, el comienzo de los requisitos basados en la temperatura del aire. no lo es. Es la temperatura de la superficie del producto de prueba. Además, la temperatura de la superficie también debe medirse y registrarse sincrónicamente durante el proceso de prueba para el análisis posterior a la prueba. El equipo de prueba ambiental relevante debe combinarse con el control de la temperatura de la superficie y la aplicación de la medición de la temperatura de la superficie se resume a continuación.
Aplicación de detección de temperatura de la mesa de prueba de la cámara de prueba de temperatura y humedad constantes:
Descripción: Cámara de prueba de temperatura y humedad constantes en el proceso de prueba, combinada con detección de temperatura multipista, alta temperatura y humedad, condensación (condensación), temperatura y humedad combinadas, ciclo de temperatura lento... Durante el proceso de prueba, el sensor fijado a la superficie del producto de prueba, que se puede utilizar para medir la temperatura de la superficie o la temperatura interna del producto de prueba. A través de este módulo de detección de temperatura de múltiples pistas, las condiciones establecidas, la temperatura y humedad reales, la temperatura de la superficie del producto de prueba y la misma medición y registro se pueden integrar en un archivo de curva sincrónico para su posterior almacenamiento y análisis.
Aplicaciones de detección y control de temperatura de la superficie de la cámara de prueba de choque térmico: [tiempo de permanencia basado en el control de la temperatura de la superficie], [registro de medición de la temperatura de la superficie del proceso de choque de temperatura]
Descripción: El sensor de temperatura de 8 rieles se fija a la superficie del producto de prueba y se aplica al proceso de choque de temperatura. El tiempo de permanencia se puede contar hacia atrás según la llegada de la temperatura superficial. Durante el proceso de impacto, las condiciones de fraguado, la temperatura de prueba, la temperatura de la superficie del producto de prueba y la misma medición y registro se pueden integrar en una curva sincrónica.
Aplicación de detección y control de temperatura de la superficie de la cámara de prueba del ciclo de temperatura: [La variabilidad de la temperatura del ciclo de temperatura y el tiempo de permanencia se controlan de acuerdo con la temperatura de la superficie del producto de prueba]
Descripción: La prueba del ciclo de temperatura es diferente de la prueba de choque de temperatura. La prueba de choque de temperatura utiliza la energía máxima del sistema para realizar cambios de temperatura entre temperaturas altas y bajas, y su tasa de cambio de temperatura es tan alta como 30 ~ 40 ℃ /min. La prueba del ciclo de temperatura requiere un proceso de cambios de temperatura alta y baja, y su variabilidad de temperatura se puede configurar y controlar. Sin embargo, las nuevas especificaciones y las condiciones de prueba de los fabricantes internacionales han comenzado a exigir que la variabilidad de la temperatura se refiera a la temperatura de la superficie del producto de prueba, no a la temperatura del aire, y el control de variabilidad de la temperatura de la especificación del ciclo de temperatura actual. Según las especificaciones de la superficie del producto de prueba son [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... Además, el tiempo de residencia de temperaturas altas y bajas también puede basarse en la superficie de prueba, en lugar de la temperatura del aire.
Aplicaciones de detección y control de temperatura de la superficie de la cámara de prueba de detección de estrés cíclico de temperatura:
Instrucciones: Máquina de prueba de detección de tensión por ciclo de temperatura, combinada con medición de temperatura de múltiples rieles, en la variabilidad de temperatura de la detección de tensión, puede optar por usar [temperatura del aire] o [temperatura de la superficie del producto de prueba] para controlar la variabilidad de la temperatura, además, En el proceso residente de alta y baja temperatura, el tiempo recíproco también se puede controlar según la superficie del producto de prueba. De acuerdo con las especificaciones pertinentes (GJB1032, IEST) y los requisitos de las organizaciones internacionales, de acuerdo con la definición de GJB1032 en el punto de medición de temperatura y tiempo de residencia de detección de tensión, 1. El número de termopares fijados en el producto no será inferior a 3, y el punto de medición de temperatura del sistema de enfriamiento no deberá ser inferior a 6, 2. Asegúrese de que la temperatura de 2/3 de los termopares del producto esté establecida en ±10 ℃, además, de acuerdo con los requisitos de IEST (Internacional Association for Environmental Science and Technology), el tiempo de residencia debe alcanzar el tiempo de estabilización de temperatura más 5 minutos o el tiempo de prueba de rendimiento.
Aplicación de detección de temperatura de superficie sin horno de aire (cámara de prueba de convección natural):
Descripción: Mediante la combinación de un horno sin viento (cámara de prueba de convección natural) y un módulo de detección de temperatura multipista, se genera la temperatura ambiente sin ventilador (convección natural) y se integra la prueba de detección de temperatura relevante. Esta solución se puede aplicar a la prueba de temperatura ambiente real de productos electrónicos (como: servidor en la nube, 5G, interior de vehículos eléctricos, ambiente interior sin aire acondicionado, inversor solar, televisor LCD grande, compartidor de Internet en el hogar, oficina 3C, computadora portátil, computadora de escritorio). , consola de juegos....... Etc.).