bandera
Hogar

Cámara de prueba de temperatura fría y caliente

Cámara de prueba de temperatura fría y caliente

  • Tablet Reliability Test Tablet Reliability Test
    Oct 16, 2024
    Tablet Reliability Test A Tablet Computer, also known as a Tablet Personal Computer (Tablet PC), is a small, portable personal computer that uses a touch screen as its basic input device. It is an electronic product with strong mobility, and it can be seen everywhere in life (such as waiting stations, trains, high-speed trains, cafes, restaurants, meeting rooms, suburbs, etc.). People carry only simple coat protection or even no, in order to facilitate use, the design reduces the size, so that it can be directly placed in the pocket or handbag, backpack, but the tablet computer in the process of moving will also experience many environmental physical changes (such as temperature, humidity, vibration, impact, extrusion, etc.). Etc.) and natural damage (such as ultraviolet light, sunlight, dust, salt spray, water droplets... It will also cause artificial unintentional injury or abnormal operation and misoperation, and even cause failure and damage (such as: household chemicals, hand sweating, falling, terminal insertion and removal too much, pocket friction, crystal nails... These will shorten the life of the tablet computer, in order to ensure the reliability of the product and extend the service life to improve, we must carry out a number of environmental reliability test projects on the tablet computer, the following relevant tests for your reference. Environmental test project description: Simulate various harsh environments and reliability assessments used by tablet computers to test whether their performance meets the requirements; It mainly includes high and low temperature operation and high and low temperature storage, temperature and condensation, temperature cycle and shock, wet and heat combination test, ultraviolet, sunlight, drip, dust, salt spray and other tests. Operating temperature range: 0℃ ~ 35℃/5% ~ 95%RH Storage temperature range: -10℃ ~ 50℃/10% ~ 90%RH Operating low temperature test: -10℃/2h/ power operation Operating high temperature test: 40℃/8h/ all running Storage low temperature test: -20℃/96h/ shutdown Storage high temperature test: 60℃/96h/ shutdown High temperature test of vehicle storage: 85℃/96h/ shutdown Temperature shock: -40℃(30min)←→80℃(30min)/10cycle Wet heat test: 40℃/95%R.H./48h/ power standby Hot and humid cycle test: 40℃/95%R.H./1h→ramp:1℃/min→-10℃/1h, 20cycles, power standby Wet heat test: 40℃/95%R.H./48h/ power standby Hot and humid cycle test: 40℃/95%R.H./1h→ramp:1℃/min→-10℃/1h, 20cycles, power standby Weather resistance test: Simulation of the most severe natural conditions, solar thermal effect test, each cycle of 24 hours, 8 hours of continuous exposure, 16 hours to keep dark, each cycle radiation amount of 8.96 kWh/m2, a total of 10cycles. Salt spray test: 5% sodium chloride solution/Water temperature 35°C/PH 6.5~7.2/24h/ Shutdown → Pure water wipe shell →55°C/0.5h→ Function test: after 2 hours, after 40/80%R.H./168h. Dripping test: According to IEC60529, in line with IPX2 waterproof rating, can prevent water droplets falling at an Angle of less than 15 degrees from entering the tablet computer and causing damage. Test conditions: water flow rate 3mm/min, 2.5min at each position, checkpoint: after test, 24 hours later, standby for 1 week. Dust Test: According to IEC60529, in line with the IP5X dust class, can not completely prevent the entry of dust but does not affect the device should be the action and anquan, in addition to tablet computers are currently many personal mobile portable 3C products commonly used dust standards, such as: mobile phones, digital cameras, MP3, MP4... Let's wait. Conditions: Dust sample 110mm/3 ~ 8h/ test for dynamic operation After the test, a microscope is used to detect whether dust particles will enter the interior space of the tablet. Chemical staining test: Confirm the external components related to the tablet, confirm the chemical resistance of household chemicals, chemicals: sunscreen, lipstick, hand cream, mosquito repellent, cooking oil (salad oil, sunflower oil, olive oil... Etc.), the test time is 24 hours, check the color, gloss, surface smoothness... Etc., and confirm whether there are bubbles or cracks. Mechanical test: Test the strength of the mechanical structure of the tablet computer and the wear resistance of the key components; Mainly includes vibration test, drop test, impact test, plug test, and wear test... Etc. Fall test: The height of 130cm, free fall on the smooth soil surface, each side fell 7 times, 2 sides a total of 14 times, tablet computer in standby state, each fall, the function of the test product is checked. Repeated drop test: the height of 30cm, free drop on the smooth dense surface of 2cm thickness, each side fell 100 times, each interval of 2s, 7 sides a total of 700 times, every 20 times, check the function of the experimental product, tablet computer is in the state of power. Random vibration test: frequency 30 ~ 100Hz, 2G, axial: three axial. Time: 1 hour in each direction, for a total of three hours, the tablet is in standby mode. Screen impact resistance test: 11φ/5.5g copper ball fell on the center surface of 1m object at 1.8m height and 3ψ/9g stainless steel ball fell at 30cm height Screen writing durability: more than 100,000 words (width R0.8mm, pressure 250g) Screen touch durability: 1 million, 10 million, 160 million, 200 million times or more (width R8mm, hardness 60°, pressure 250g, 2 times per second) Screen flat press test: the diameter of the rubber block is 8mm, the pressure speed is 1.2mm/min, the vertical direction is 5kg force flat press the window 3 times, each time for 5 seconds, the screen should display normally. Screen front flat press test: The entire contact area, the direction of the vertical 25kg force front flat press each side of the tablet computer, for 10 seconds, flat press 3 times, there should be no abnormal. Earphone plug and remove test: Insert the earphone vertically into the earphone hole, and then pull it out vertically. Repeat this for more than 5000 times I/O plug and pull test: The tablet is in standby state, and the plug terminal connector is pulled out, a total of more than 5000 times Pocket friction test: Simulate various materials pocket or backpack, the tablet is repeatedly rubbed in the pocket 2,000 times (friction test will also add some mixed dust particles, including dust particles, yan grass particles, fluff and paper particles for mixing test). Screen hardness test: hardness greater than class 7 (ASTM D 3363, JIS 5400) Screen impact test: hit the most vulnerable sides and center of the panel with a force of more than 5㎏  
    LEER MÁS
  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    LEER MÁS
  • Temperature Cyclic Stress Screening (1) Temperature Cyclic Stress Screening (1)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (1) Environmental Stress Screening (ESS) Stress screening is the use of acceleration techniques and environmental stress under the design strength limit, such as: burn in, temperature cycling, random vibration, power cycle... By accelerating the stress, the potential defects in the product emerge [potential parts material defects, design defects, process defects, process defects], and eliminate electronic or mechanical residual stress, as well as eliminate stray capacitors between multi-layer circuit boards, the early death stage of the product in the bath curve is removed and repaired in advance, so that the product through moderate screening, Save the normal period and decline period of the bathtub curve to avoid the product in the process of use, the test of environmental stress sometimes lead to failure, resulting in unnecessary losses. Although the use of ESS stress screening will increase the cost and time, for improving the product delivery yield and reduce the number of repairs, there is a significant effect, but for the total cost will be reduced. In addition, customer trust will also be improved, generally for electronic parts of the stress screening methods are pre-burning, temperature cycle, high temperature, low temperature, PCB printed circuit board stress screening method is temperature cycle, for the electronic cost of the stress screening is: Power pre-burning, temperature cycling, random vibration, in addition to the stress screen itself is a process stage, rather than a test, screening is 100% of the product procedure. Stress screening applicable product stage: R & D stage, mass production stage, before delivery (screening test can be carried out in components, devices, connectors and other products or the whole machine system, according to different requirements can have different screening stress) Stress screening comparison: a. Constant high temperature pre-burning (Burn in) stress screening, is the current electronic IT industry commonly used method to precipitate electronic components defects, but this method is not suitable for screening parts (PCB, IC, resistor, capacitor), According to statistics, the number of companies in the United States that use temperature cycling to screen parts is five times more than the number of companies that use constant high temperature prefiring to screen components. B. GJB/DZ34 indicates the proportion of temperature cycle and random vibrating screen selection defects, temperature accounted for about 80%, vibration accounted for about 20% of the defects in various products. c. The United States has conducted a survey of 42 enterprises, random vibration stress can screen out 15 to 25% of the defects, while the temperature cycle can screen out 75 to 85%, if the combination of the two can reach 90%. d. The proportion of product defect types detected by temperature cycling: insufficient design margin: 5%, production and workmanship errors: 33%, defective parts: 62% Description of fault induction of temperature cyclic stress screening: The cause of product failure induced by temperature cycling is: when the temperature is cycled within the upper and lower extremal temperatures, the product produces alternating expansion and contraction, resulting in thermal stress and strain in the product. If there is a transient thermal ladder (temperature non-uniformity) within the product, or the thermal expansion coefficients of adjacent materials within the product do not match each other, these thermal stresses and strains will be more drastic. This stress and strain is greatest at the defect, and this cycle causes the defect to grow so large that it can eventually cause structural failure and generate electrical failure. For example, a cracked electroplated through-hole eventually cracks completely around it, causing an open circuit. Thermal cycling enables soldering and plating through holes on printed circuit boards... Temperature cyclic stress screening is especially suitable for electronic products with printed circuit board structure. The fault mode triggered by the temperature cycle or the impact on the product is as follows: a. The expansion of various microscopic cracks in the coating, material or wire b. Loosen poorly bonded joints c. Loosen improperly connected or riveted joints d. Relax the pressed fittings with insufficient mechanical tension e. Increase the contact resistance of poor quality solder joints or cause an open circuit f. Particle, chemical pollution g. Seal failure h. Packaging issues, such as bonding of protective coatings i. Short circuit or open circuit of the transformer and coil j. The potentiometer is defective k. Poor connection of welding and welding points l. Cold welding contact m. Multi-layer board due to improper handling of open circuit, short circuit n. Short circuit of power transistor o. Capacitor, transistor bad p. Dual row integrated circuit failure q. A box or cable that is nearly short-circuited due to damage or improper assembly r. Breakage, breakage, scoring of material due to improper handling... Etc. s. out-of-tolerance parts and materials t. resistor ruptured due to lack of synthetic rubber buffer coating u. The transistor hair is involved in the grounding of the metal strip v. Mica insulation gasket rupture, resulting in short circuit transistor w. Improper fixing of the metal plate of the regulating coil leads to irregular output x. The bipolar vacuum tube is open internally at low temperature y. Coil indirect short circuit z. Ungrounded terminals a1. Component parameter drift a2. Components are improperly installed a3. Misused components a4. Seal failure Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition)
    LEER MÁS
  • Temperature Cyclic Stress Screening (2) Temperature Cyclic Stress Screening (2)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (2) Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition) Stress screening fatigue classification: The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue. Stress screening acronyms: ESS: Environmental stress screening FBT: Function board tester ICA: Circuit analyzer ICT: Circuit tester LBS: load board short-circuit tester MTBF: mean time between failures Time of temperature cycles: a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening]. B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25). Temperature variability: a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min] B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
    LEER MÁS
  • Prueba de rotura transitoria del ciclo de temperatura de la placa VMR Prueba de rotura transitoria del ciclo de temperatura de la placa VMR
    Oct 11, 2024
    Prueba de rotura transitoria del ciclo de temperatura de la placa VMRLa prueba del ciclo de temperatura es uno de los métodos más utilizados para la prueba de confiabilidad y vida útil de materiales de soldadura sin plomo y piezas SMD. Evalúa las piezas adhesivas y las uniones de soldadura en la superficie de SMD, y causa deformación plástica y fatiga mecánica de los materiales de las uniones de soldadura bajo el efecto de fatiga del ciclo de temperatura fría y caliente con variabilidad de temperatura controlada, para comprender los peligros potenciales y los factores de falla. de uniones de soldadura y SMD. El diagrama de cadena tipo margarita está conectado entre las piezas y las uniones de soldadura. El proceso de prueba detecta el encendido y apagado entre líneas, piezas y uniones de soldadura a través del sistema de medición de rotura instantánea de alta velocidad, que satisface la demanda de pruebas de confiabilidad de conexiones eléctricas para evaluar si las uniones de soldadura, bolas de estaño y las piezas fallan. Esta prueba no es realmente simulada. Su propósito es aplicar una tensión severa y acelerar el factor de envejecimiento en el objeto que se va a probar para confirmar si el producto está diseñado o fabricado correctamente y luego evaluar la vida útil de la fatiga térmica de las uniones de soldadura de los componentes. La prueba de confiabilidad de la conexión eléctrica de ruptura instantánea de alta velocidad se ha convertido en un eslabón clave para garantizar el funcionamiento normal del sistema electrónico y evitar la falla de la conexión eléctrica causada por la falla del sistema inmaduro. Los cambios de resistencia durante un corto período de tiempo se observaron bajo cambios acelerados de temperatura y pruebas de vibración.Objetivo:1. Asegurar que los productos diseñados, fabricados y ensamblados cumplan con los requisitos predeterminados.2. Relajación de la tensión de fluencia de la junta de soldadura y falla por fractura SMD causada por la diferencia de expansión térmica3. La temperatura máxima de prueba del ciclo de temperatura debe ser 25 ℃ menor que la temperatura Tg del material de PCB, para evitar más de un mecanismo de daño del producto de prueba sustituto.4. La variabilidad de temperatura a 20 ℃/min es un ciclo de temperatura, y la variabilidad de temperatura por encima de 20 ℃/min es un choque de temperatura5. El intervalo de medición dinámica de la junta de soldadura no supera 1 min.6. El tiempo de residencia a alta y baja temperatura para la determinación de fallas debe medirse en 5 golpes.Requisitos:1. El tiempo de temperatura total del producto de prueba está dentro del rango de la temperatura máxima nominal y la temperatura mínima, y la duración del tiempo de residencia es muy importante para la prueba acelerada, porque el tiempo de residencia no es suficiente durante la prueba acelerada. , lo que hará que el proceso de fluencia sea incompleto2. La temperatura residente debe ser superior a la temperatura Tmax e inferior a la temperatura TminConsulte la lista de especificaciones:IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117, SJR-01
    LEER MÁS
  • Módulos solares de CA y microinversores 1 Módulos solares de CA y microinversores 1
    Oct 09, 2024
    Módulos solares de CA y microinversores 1La potencia de salida total del panel de células solares se reduce considerablemente, principalmente debido a algunos daños en el módulo (granizo, presión del viento, vibración del viento, presión de la nieve, rayos), sombras locales, suciedad, ángulo de inclinación, orientación, diferentes grados de envejecimiento, pequeñas grietas... Estos problemas provocarán una desalineación de la configuración del sistema, lo que dará como resultado defectos de eficiencia de salida reducidos, que son difíciles de superar con los inversores centralizados tradicionales. Relación de costo de generación de energía solar: módulo (40 ~ 50%), construcción (20 ~ 30%), inversor (
    LEER MÁS
  • Módulos solares de CA y microinversores 2 Módulos solares de CA y microinversores 2
    Oct 08, 2024
    Módulos solares de CA y microinversores 2Especificación de prueba del módulo de CA:Certificación ETL: UL 1741, Estándar CSA 22.2, Estándar CSA 22.2 No. 107.1-1, IEEE 1547, IEEE 929Módulo fotovoltaico: UL1703Boletín: 47CFR, Parte 15, Clase BClasificación de sobretensión: IEEE 62.41 Clase BCódigo Eléctrico Nacional: NEC 1999-2008Dispositivos de protección de arco: IEEE 1547Ondas electromagnéticas: BS EN 55022, FCC Clase B según CISPR 22B, EMC 89/336/EEG, EN 50081-1, EN 61000-3-2, EN 50082-2, EN 60950Microinversor (Microinversor): UL1741-calss ATasa típica de falla de componentes: MIL HB-217FOtras especificaciones:IEC 503, IEC 62380 IEEE1547, IEEE929, IEEE-P929, IEEE SCC21, ANSI/NFPA-70 NEC690.2, NEC690.5, NEC690.6, NEC690.10, NEC690.11, NEC690.14, NEC690.17, NEC690 .18, NEC690.64Especificaciones principales del módulo solar de CA:Temperatura de funcionamiento: -20 ℃ ~ 46 ℃, -40 ℃ ~ 60 ℃, -40 ℃ ~ 65 ℃, -40 ℃ ~ 85 ℃, -20 ~ 90 ℃Voltaje de salida: 120/240V, 117V, 120/208VFrecuencia de potencia de salida: 60HzVentajas de los módulos de CA:1. Intente aumentar la generación de energía de cada módulo de potencia del inversor y realice un seguimiento de la potencia máxima, debido a que se realiza un seguimiento del punto de potencia máxima de un solo componente, la generación de energía del sistema fotovoltaico se puede mejorar considerablemente, que se puede aumentar en un 25%. .2. Ajustando el voltaje y la corriente de cada fila de paneles solares hasta que todos estén equilibrados, para evitar desajustes en el sistema.3. Cada módulo tiene una función de monitoreo para reducir el costo de mantenimiento del sistema y hacer que la operación sea más estable y confiable.4. La configuración es flexible y el tamaño de la célula solar se puede instalar en el mercado doméstico de acuerdo con los recursos financieros del usuario.5. Sin alto voltaje, más seguro de usar, fácil de instalar, más rápido, con bajos costos de mantenimiento e instalación, reduce la dependencia de los proveedores de servicios de instalación, de modo que los propios usuarios puedan instalar el sistema de energía solar.6. El coste es similar o incluso inferior al de los inversores centralizados.7. Fácil instalación (el tiempo de instalación se reduce a la mitad).8. Reducir los costos de adquisición e instalación.9. Reducir el costo total de la generación de energía solar.10. Sin programa especial de cableado e instalación.11. La falla de un solo módulo de CA no afecta a otros módulos o sistemas.12. Si el módulo es anormal, el interruptor de alimentación se puede cortar automáticamente.13. Para el mantenimiento sólo se requiere un simple procedimiento de interrupción.14. Puede instalarse en cualquier dirección y no afectará a otros módulos del sistema.15. Puede llenar todo el espacio del escenario, siempre y cuando se coloque debajo de él.16. Reducir el puente entre la línea CC y el cable.17. Reducir los conectores DC (conectores DC).18. Reducir la detección de fallas a tierra de CC y configurar dispositivos de protección.19. Reducir las cajas de conexiones de CC.20. Reducir el diodo de derivación del módulo solar.21. No es necesario comprar, instalar ni mantener inversores grandes.22. No es necesario comprar pilas.23. Cada módulo está instalado con un dispositivo antiarco que cumple con los requisitos de la especificación UL1741.24. El módulo se comunica directamente a través del cable de salida de alimentación de CA sin configurar otra línea de comunicación.25. 40% menos componentes.
    LEER MÁS
  • Módulos solares de CA y microinversores 3 Módulos solares de CA y microinversores 3
    Oct 08, 2024
    Módulos solares de CA y microinversores 3Método de prueba del módulo de CA:1. Prueba de rendimiento de salida: el equipo de prueba del módulo existente, para las pruebas relacionadas con el módulo no inversor.2. Prueba de estrés eléctrico: realice una prueba de ciclo de temperatura en diferentes condiciones para evaluar las características del inversor en condiciones de temperatura de funcionamiento y temperatura de espera.3. Prueba de estrés mecánico: descubra el microinversor con adherencia débil y el condensador soldado en la placa PCB4. Utilice un simulador solar para las pruebas generales: se requiere un simulador solar de pulso en estado estacionario de gran tamaño y buena uniformidad.5. Prueba en exteriores: registre la curva I-V de salida del módulo y la curva de conversión de eficiencia del inversor en un ambiente exterior6. Prueba individual: cada componente del módulo se prueba por separado en la sala y el beneficio integral se calcula mediante la fórmula7. Prueba de interferencia electromagnética: debido a que el módulo tiene el componente inversor, es necesario evaluar el impacto en EMC y EMI cuando el módulo funciona bajo el simulador de luz solar.Causas comunes de falla de los módulos de CA:1. El valor de resistencia es incorrecto.2. El diodo está invertido.3. Causas de falla del inversor: falla del capacitor electrolítico, humedad, polvoCondiciones de prueba del módulo de CA:Prueba HAST: 110 ℃/85% R.H./206 h (Laboratorio Nacional Sandia)Prueba de alta temperatura (UL1741): 50 ℃, 60 ℃Ciclo de temperatura: -40℃←→90℃/200cicloCongelación húmeda: 85 ℃/85 % H.R.←→-40 ℃/10 ciclos, 110 ciclos (prueba Enphase-ALT)Prueba de calor húmedo: 85 ℃/85% R.H/1000 hMúltiples pruebas de presión ambiental (MEOST): -50 ℃ ~ 120 ℃, vibración 30G ~ 50GResistente al agua: NEMA 6/24 horasPrueba de rayos: sobretensión tolerada hasta 6000 VOtros (consulte UL1703): prueba de pulverización de agua, prueba de resistencia a la tracción, prueba antiarcoMTBF de módulos relacionados con energía solar:Inversor tradicional 10 ~ 15 años, microinversor 331 años, módulo fotovoltaico 600 años, microinversor 600 años[futuro]Introducción del microinversor:Instrucciones: Micro inversor (microinversor) aplicado al módulo solar, cada módulo solar de CC está equipado con un, puede reducir la probabilidad de que se produzca un arco, el microinversor puede pasar directamente a través del cable de salida de alimentación de CA, comunicación de red directa, solo es necesario instalar una fuente de alimentación. Línea Puente Ethernet (Puente Ethernet Powerline) en el enchufe, no es necesario configurar otra línea de comunicación, los usuarios pueden a través de la página web de la computadora, iPhone, Blackberry, tableta... Etc., observar directamente el estado operativo de cada módulo. (salida de potencia, temperatura del módulo, mensaje de falla, código de identificación del módulo), si hay una anomalía, se puede reparar o reemplazar inmediatamente, para que todo el sistema de energía solar pueda funcionar sin problemas, porque el micro inversor está instalado detrás del módulo. por lo que el efecto de envejecimiento de la radiación ultravioleta en el microinversor también es bajo.Especificaciones del microinversor:UL 1741 CSA 22.2, CSA 22.2, No. 107.1-1 IEEE 1547 IEEE 929 FCC 47CFR, Parte 15, Clase B Cumple con el Código Eléctrico Nacional (NEC 1999-2008) EIA-IS-749 (prueba de vida útil de aplicaciones principales corregida, especificación para uso de condensadores)Prueba de microinversor:1. Prueba de confiabilidad del microinversor: peso del microinversor +65 libras *4 veces2. Prueba de impermeabilidad del microinversor: NEMA 6 [funcionamiento continuo de 1 metro en agua durante 24 horas]3. Congelación húmeda según el método de prueba IEC61215: 85 ℃/85 % H.R.←→-45 ℃/110 días4. Prueba de vida útil acelerada del microinversor [110 días en total, prueba dinámica a potencia nominal, ha garantizado que el microinversor pueda durar más de 20 años]:Paso 1: Congelación húmeda: 85 ℃/85 % H.R.←→-45 ℃/10 díasPaso 2: Ciclo de temperatura: -45 ℃ ← → 85 ℃/50 díasPaso 3: Calor húmedo: 85 ℃/85 % H.R./50 días
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos