bandera
Hogar

Cámara de prueba de ciclo de temperatura

Cámara de prueba de ciclo de temperatura

  • Prueba de ciclo de temperatura IEEE1513 y prueba de congelación húmeda, prueba de calor y humedad 2 Prueba de ciclo de temperatura IEEE1513 y prueba de congelación húmeda, prueba de calor y humedad 2
    Sep 29, 2024
    Prueba de ciclo de temperatura IEEE1513 y prueba de congelación húmeda, prueba de calor y humedad 2Pasos:Ambos módulos realizarán 200 ciclos de temperatura entre -40 °C y 60 °C o 50 ciclos de temperatura entre -40 °C y 90 °C, como se especifica en ASTM E1171-99.Nota:ASTM E1171-01: Método de prueba para módulo fotoeléctrico a temperatura y humedad del circuitoNo es necesario controlar la humedad relativa.La variación de temperatura no debe exceder los 100 ℃/hora.El tiempo de residencia debe ser de al menos 10 minutos y la temperatura alta y baja debe estar dentro del requisito de ±5 ℃Requisitos:a. El módulo será inspeccionado para detectar cualquier daño o degradación evidente después de la prueba del ciclo.b. El módulo no debe presentar grietas ni deformaciones y el material de sellado no debe deslaminarse.do. Si hay una prueba de función eléctrica selectiva, la potencia de salida debe ser del 90% o más en las mismas condiciones que muchos parámetros básicos originales.Agregado:IEEE1513-4.1.1 Muestra de prueba del receptor o módulo representativo, si el tamaño de un módulo o receptor completo es demasiado grande para caber en una cámara de prueba ambiental existente, el representante del módulo o la muestra de prueba del receptor se puede sustituir por un módulo o receptor de tamaño completo.Estas muestras de prueba deben ensamblarse especialmente con un receptor de reemplazo, como si contuvieran una cadena de celdas conectadas a un receptor de tamaño completo, la cadena de baterías debe ser larga e incluir al menos dos diodos de derivación, pero en cualquier caso tres celdas son relativamente pocas. , que resume la inclusión de enlaces con el terminal receptor de repuesto debe ser el mismo que el del módulo completo.El receptor de reemplazo incluirá componentes representativos de los otros módulos, incluida la lente/carcasa de la lente, el receptor/carcasa del receptor, el segmento trasero/la lente del segmento trasero, la caja y el conector del receptor; se probarán los procedimientos A, B y C.Se deben utilizar dos módulos de tamaño completo para el procedimiento de prueba de exposición al aire libre D.IEEE1513-5.8 Prueba del ciclo de congelación de humedad Prueba del ciclo de congelación de humedadReceptorObjetivo:Determinar si la parte receptora es suficiente para resistir el daño por corrosión y la capacidad de la expansión de la humedad para expandir las moléculas del material. Además, el vapor de agua congelado es la tensión para determinar la causa de la falla.Procedimiento:Las muestras después del ciclo de temperatura se probarán de acuerdo con la Tabla 3 y se someterán a una prueba de congelación húmeda a 85 ℃ y -40 ℃, humedad del 85 % y 20 ciclos. Según ASTM E1171-99, el extremo receptor con gran volumen deberá referirse a 4.1.1Requisitos:La parte receptora deberá cumplir con los requisitos de 5.7. Saque del tanque ambiental dentro de 2 a 4 horas y la parte receptora debe cumplir con los requisitos de la prueba de fuga de aislamiento de alto voltaje (consulte 5.4).móduloObjetivo:Determine si el módulo tiene capacidad suficiente para resistir la corrosión dañina o la ampliación de las diferencias de unión de materiales.Procedimiento: Ambos módulos serán sometidos a pruebas de congelación húmeda durante 20 ciclos, 4 o 10 ciclos a 85°C como se muestra en ASTM E1171-99.Tenga en cuenta que la temperatura máxima de 60 °C es inferior a la sección de prueba de congelación húmeda en el extremo receptor.Se completará una prueba completa de aislamiento de alto voltaje (ver 5.4) después de un ciclo de dos a cuatro horas. Después de la prueba de aislamiento de alta tensión, se llevará a cabo la prueba de rendimiento eléctrico como se describe en 5.2. En módulos grandes también se podrán completar, ver 4.1.1.Requisitos:a. El módulo comprobará si hay algún daño o degradación evidente después de la prueba y registrará cualquier daño.b. El módulo no debe presentar grietas, deformaciones ni corrosión grave. No debe haber capas de material sellador.do. El módulo deberá pasar la prueba de aislamiento de alto voltaje como se describe en IEEE1513-5.4.Si hay una prueba de función eléctrica selectiva, la potencia de salida puede alcanzar el 90% o más en las mismas condiciones de muchos parámetros básicos originales.IEEE1513-5.10 Prueba de calor húmedo IEEE1513-5.10 Prueba de calor húmedoObjetivo: Evaluar el efecto y la capacidad del extremo receptor para resistir la infiltración de humedad a largo plazo.Procedimiento: El receptor de prueba se prueba en una cámara de prueba ambiental con 85 % ± 5 % de humedad relativa y 85 ° C ± 2 ° C como se describe en ASTM E1171-99. Esta prueba debe completarse en 1000 horas, pero se pueden agregar 60 horas adicionales para realizar una prueba de fuga de aislamiento de alto voltaje. La parte receptora se puede utilizar para realizar pruebas.Requisitos: El extremo receptor debe salir de la cámara de prueba de calor húmedo durante 2 ~ 4 horas para pasar la prueba de fugas de aislamiento de alto voltaje (ver 5.4) y pasar la inspección visual (ver 5.1). Si hay una prueba de función eléctrica selectiva, la potencia de salida debe ser del 90% o más en las mismas condiciones de muchos parámetros básicos originales.Procedimientos de inspección y prueba del módulo IEEE1513IEEE1513-5.1 Procedimiento de inspección visualPropósito: Establecer el estado visual actual para que el extremo receptor pueda comparar si pasan cada prueba y garantizar que cumplen con los requisitos para pruebas adicionales.Prueba de rendimiento eléctrico IEEE1513-5.2Objetivo: Describir las características eléctricas del módulo de prueba y del receptor y determinar su potencia máxima de salida.Prueba de continuidad de tierra IEEE1513-5.3Propósito: Verificar la continuidad eléctrica entre todos los componentes conductores expuestos y el módulo de puesta a tierra.Prueba de aislamiento eléctrico IEEE1513-5.4 (seco hi-po)Propósito: Garantizar que el aislamiento eléctrico entre el módulo del circuito y cualquier parte conductora de contacto externo sea suficiente para evitar la corrosión y salvaguardar la seguridad de los trabajadores.Prueba de resistencia de aislamiento húmedo IEEE1513-5.5Propósito: Verificar que la humedad no pueda penetrar la parte electrónicamente activa del extremo receptor, donde podría causar corrosión, falla a tierra o identificar peligros para la seguridad humana.Prueba de pulverización de agua IEEE1513-5.6Objetivo: La prueba de resistencia húmeda en campo (FWRT) evalúa el aislamiento eléctrico de los módulos de células solares en función de las condiciones de funcionamiento de humedad. Esta prueba simula lluvia intensa o rocío en su configuración y cableado para verificar que no ingrese humedad al circuito de matriz utilizado, lo que puede aumentar la corrosividad, causar fallas a tierra y crear riesgos de seguridad eléctrica para el personal o el equipo.Prueba de ciclo térmico IEEE1513-5.7 (Prueba de ciclo térmico)Objetivo: Determinar si el extremo receptor puede soportar adecuadamente la falla causada por la diferencia en la expansión térmica de las piezas y materiales de las juntas.Prueba de ciclo de congelación de humedad IEEE1513-5.8Objetivo: determinar si la pieza receptora es suficientemente resistente a los daños por corrosión y a la capacidad de la expansión de la humedad para expandir las moléculas del material. Además, el vapor de agua congelado es el factor determinante para determinar la causa del fallo.IEEE1513-5.9 Prueba de robustez de terminacionesPropósito: Para asegurar los cables y conectores, aplique fuerzas externas en cada parte para confirmar que sean lo suficientemente fuertes como para mantener los procedimientos de manipulación normales.IEEE1513-5.10 Prueba de calor húmedo (Prueba de calor húmedo)Objetivo: Evaluar el efecto y la capacidad del extremo receptor para resistir la infiltración de humedad a largo plazo. IEEE1513-5.11 Prueba de impacto de granizoObjetivo: Determinar si algún componente, especialmente el condensador, puede sobrevivir al granizo. ES DECIREE1513-5.12 Prueba térmica del diodo de derivación (Prueba térmica del diodo de derivación)Objetivo: Evaluar la disponibilidad de un diseño térmico suficiente y el uso de diodos de derivación con relativa confiabilidad a largo plazo para limitar los efectos adversos de la difusión por desplazamiento térmico del módulo.Prueba de resistencia de punto caliente IEEE1513-5.13 (prueba de resistencia de punto caliente)Objetivo: Evaluar la capacidad de los módulos para soportar cambios de calor periódicos a lo largo del tiempo, comúnmente asociados con escenarios de falla como chips de celdas severamente agrietados o no coincidentes, fallas de circuito abierto de un solo punto o sombras desiguales (porciones sombreadas). IEEE1513-5.14 Prueba de exposición al aire libre (Prueba de exposición al aire libre)Propósito: Para evaluar preliminarmente la capacidad del módulo para resistir la exposición a ambientes exteriores (incluida la radiación ultravioleta), es posible que las pruebas de laboratorio no detecten la efectividad reducida del producto.IEEE1513-5.15 Prueba de daño del haz fuera del ejePropósito: Asegurar que cualquier parte del módulo sea destruida debido a la desviación del módulo del haz de radiación solar concentrada. 
    LEER MÁS
  • Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticas Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticas
    Sep 27, 2024
    Aplicación de la cámara de ciclo de temperatura TCT en la industria de las comunicaciones ópticasLa llegada de 5G hace que la gente sienta el rápido desarrollo de Internet móvil y también se ha desarrollado la tecnología de comunicación óptica como una base importante. En la actualidad, China ha construido la red de fibra óptica más larga del mundo y, con el avance continuo de la tecnología 5G, la tecnología de comunicación óptica se utilizará más ampliamente. El desarrollo de la tecnología de comunicación óptica no solo permite a las personas disfrutar de una velocidad de red más rápida, sino que también trae más oportunidades y desafíos. Por ejemplo, nuevas aplicaciones como los juegos en la nube, la realidad virtual y la realidad aumentada requieren redes más estables y de alta velocidad, y la tecnología de comunicación óptica puede satisfacer estas necesidades. Al mismo tiempo, la tecnología de comunicación óptica también ha brindado más oportunidades de innovación, como la atención médica inteligente, la fabricación inteligente y otros campos, utilizarán la tecnología de comunicación óptica para lograr un funcionamiento más eficiente y preciso. ¿Pero sabes qué? Esta asombrosa tecnología no se puede lograr sin el crédito de los equipos de prueba macroambientales, especialmente la cámara de prueba del ciclo de temperatura TC, que es una cámara de prueba de cambio rápido de temperatura. Este artículo le presenta el administrador de calidad de las pruebas de confiabilidad de productos de comunicaciones ópticas: laboratorio de cambio rápido de temperatura.Primero, hablemos brevemente sobre la comunicación óptica. Algunas personas también dicen que se llama comunicación óptica, por lo que al final son dos no es un concepto. De hecho, son dos del mismo concepto. La comunicación óptica es el uso de señales ópticas para la tecnología de la comunicación, y la comunicación óptica se basa en la comunicación óptica, a través de dispositivos ópticos como fibras ópticas y cables ópticos para lograr la transmisión de datos. La tecnología de comunicación óptica se utiliza ampliamente, como nuestro uso diario de banda ancha de fibra óptica, sensores ópticos de teléfonos móviles, medición óptica en el sector aeroespacial, etc. Se puede decir que la comunicación óptica se ha convertido en una parte importante del campo de la comunicación moderna. Entonces, ¿por qué es tan popular la comunicación óptica? De hecho, tiene muchas ventajas, como transmisión de alta velocidad, gran ancho de banda, baja pérdida, etc.Los productos de comunicación óptica comunes incluyen: cable óptico, conmutador de fibra, módem de fibra, etc., utilizados para transmitir y recibir señales ópticas de equipos de comunicación de fibra óptica; El sensor de temperatura, el sensor de tensión, el sensor de desplazamiento, etc., pueden medir varias cantidades físicas en tiempo real y otros sensores de fibra óptica; Amplificador óptico dopado con erbio, amplificador óptico dopado con iterbio y erbio, amplificador Raman, etc., utilizados para ampliar la intensidad de las señales ópticas y otros amplificadores ópticos; El láser de helio-neón, el láser de diodo, el láser de fibra, etc., son fuentes de luz en comunicación óptica, que se utilizan para producir luz láser de alto brillo, direccional y coherente y otros láseres; Fotodetectores, limitadores ópticos, fotodiodos, etc., para recibir señales ópticas y convertirlas en señales eléctricas y otros receptores ópticos; Los interruptores ópticos, los moduladores ópticos, los conjuntos ópticos programables, etc. se utilizan para controlar y ajustar la transmisión y el enrutamiento de señales ópticas y otros controladores ópticos. Tomemos los teléfonos móviles como ejemplo y hablemos de la aplicación de productos de comunicación óptica en teléfonos móviles:1. Fibra óptica: La fibra óptica se utiliza generalmente como parte de la línea de comunicación; debido a su rápida velocidad de transmisión, las señales de comunicación no se ven fácilmente afectadas por interferencias externas y otras características, se ha convertido en una parte importante de la comunicación por teléfono móvil.2. Convertidor fotoeléctrico/módulo óptico: el convertidor fotoeléctrico y el módulo óptico son dispositivos que convierten señales ópticas en señales eléctricas y también son una parte muy importante de la comunicación de los teléfonos móviles. En la era de las comunicaciones de alta velocidad, como 4G y 5G, la velocidad y el rendimiento de dichos equipos deben mejorarse continuamente para satisfacer las necesidades de una comunicación rápida y estable.3. Módulo de cámara: en el teléfono móvil, el módulo de cámara generalmente incluye CCD, CMOS, lentes ópticas y otras partes, y su calidad y rendimiento también tienen un impacto significativo en la calidad de la comunicación óptica del teléfono móvil.4. Pantalla: las pantallas de los teléfonos móviles generalmente utilizan OLED, AMOLED y otras tecnologías; el principio de estas tecnologías está relacionado con la óptica, pero también es una parte importante de la comunicación óptica de los teléfonos móviles.5. Sensor de luz: El sensor de luz se utiliza principalmente en teléfonos móviles para detección de luz ambiental, detección de proximidad y detección de gestos, y también es un importante producto de comunicación óptica para teléfonos móviles.Se puede decir que los productos de comunicación óptica llenan todos los aspectos de nuestra vida y trabajo. Sin embargo, el entorno de producción y uso de los productos de comunicación óptica a menudo cambia, como el entorno climático de alta o baja temperatura cuando se trabaja al aire libre, o el uso durante mucho tiempo también encontrará cambios en la expansión y contracción térmica. Entonces, ¿cómo se logra el uso confiable de estos productos? Cabe mencionar a nuestro protagonista de hoy: la cámara de prueba de cambio rápido de temperatura, también conocida como caja TC en la industria de las comunicaciones ópticas. Para garantizar que los productos de comunicación óptica sigan funcionando normalmente en diversas condiciones ambientales, es necesario realizar pruebas rápidas de cambio de temperatura en los productos de comunicación óptica. La cámara de prueba de cambio rápido de temperatura puede simular una variedad de ambientes de temperatura y humedad diferentes, y simular cambios ambientales extremos instantáneos en el mundo real dentro de un rango rápido. Entonces, ¿cómo se aplica la cámara de prueba de cambio rápido de temperatura en la industria de las comunicaciones ópticas?1. Prueba de rendimiento del módulo óptico: el módulo óptico es un componente clave de la comunicación óptica, como transceptor óptico, amplificador óptico, interruptor óptico, etc. La cámara de prueba de cambio rápido de temperatura puede simular diferentes entornos de temperatura y probar el rendimiento del módulo óptico en diferentes temperaturas para evaluar su adaptabilidad y confiabilidad.2. Prueba de confiabilidad de dispositivos ópticos: los dispositivos ópticos incluyen fibras ópticas, sensores ópticos, rejillas, cristales fotónicos, fotodiodos, etc. La cámara de prueba de cambio rápido de temperatura puede probar el cambio de temperatura de estos dispositivos ópticos y evaluar su confiabilidad y vida útil según el resultados de la prueba.3. Prueba de simulación del sistema de comunicación óptica: la cámara de prueba de cambio rápido de temperatura puede simular diversas condiciones ambientales en el sistema de comunicación óptica, como temperatura, humedad, vibración, etc., para probar el rendimiento, la confiabilidad y la estabilidad de todo el sistema.4. Investigación y desarrollo de tecnología: la industria de las comunicaciones ópticas es una industria intensiva en tecnología, que necesita desarrollar constantemente nuevas tecnologías y nuevos productos. La cámara de prueba de cambio rápido de temperatura se puede utilizar para probar el rendimiento y la confiabilidad de nuevos productos, lo que ayuda a acelerar el desarrollo y el mercado de nuevos productos.En resumen, se puede ver que en la industria de las comunicaciones ópticas, la cámara de prueba de cambio rápido de temperatura se usa generalmente para probar el rendimiento y la confiabilidad de módulos ópticos y dispositivos ópticos. Luego, cuando utilizamos la cámara de prueba de cambio rápido de temperatura para realizar pruebas, diferentes productos de comunicación óptica pueden requerir diferentes estándares. Los siguientes son estándares de prueba de cambio rápido de temperatura para algunos productos de comunicación óptica comunes:1. Fibra óptica: estándares de prueba comunes Existen estándares de prueba de cambio rápido de temperatura de fibra óptica comunes que son los siguientes: IEC 61300-2-22: La norma define el método de prueba de estabilidad y durabilidad de los componentes de fibra óptica, cuya sección 4.3 especifica la temperatura. Método de prueba de estabilidad de componentes de fibra óptica, en el caso de cambios rápidos de temperatura en los componentes de fibra óptica para medición y evaluación. GR-326-CORE: Esta norma especifica los requisitos de prueba de confiabilidad para conectores y adaptadores de fibra óptica, incluidas pruebas de estabilidad térmica para evaluar la confiabilidad de conectores y adaptadores de fibra óptica en entornos con cambios de temperatura. GR-468-CORE: Este estándar define las especificaciones de rendimiento y los métodos de prueba para conectores de fibra óptica, incluidas pruebas de ciclos de temperatura, pruebas de envejecimiento acelerado, etc., para verificar la confiabilidad y estabilidad de los conectores de fibra óptica en diversas condiciones ambientales. ASTM F2181: esta norma define un método para realizar pruebas de falla de la fibra en condiciones ambientales de alta temperatura y alta humedad para evaluar la durabilidad a largo plazo de la fibra. Y los estándares anteriores, como GB/T 2423.22-2012, se prueban y evalúan para determinar la confiabilidad de la fibra óptica en cambios rápidos de temperatura o ambientes de alta temperatura y humedad a largo plazo, lo que puede ayudar a la mayoría de los fabricantes a garantizar la calidad y confiabilidad. de productos de fibra óptica.2. Convertidor fotoeléctrico/módulo óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 2423.22-2012, GR-468-CORE, EIA/TIA-455-14 e IEEE 802.3. Estos estándares cubren principalmente los métodos de prueba y los pasos de implementación específicos de convertidores fotoeléctricos/módulos ópticos, que pueden garantizar el rendimiento y la confiabilidad de los productos en diferentes ambientes de temperatura. Entre ellos, el estándar GR-468-CORE es específicamente para los requisitos de confiabilidad de los convertidores y módulos ópticos, incluida la prueba de ciclo de temperatura, la prueba de calor húmedo y otras pruebas ambientales, que requieren que los convertidores y módulos ópticos mantengan un rendimiento estable y confiable en largos periodos de tiempo. -término de uso.3. Sensor óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 27726-2011, IEC 61300-2-43 e IEC 61300-2-6. Estos estándares cubren principalmente los métodos de prueba y los pasos de implementación específicos de la prueba de cambio de temperatura del sensor óptico, que pueden garantizar el rendimiento y la confiabilidad del producto en diferentes entornos de temperatura. Entre ellos, el estándar GB/T 27726-2011 es el estándar para el método de prueba de rendimiento de sensores ópticos en China, incluido el método de prueba ambiental de sensores de fibra óptica, que requiere que el sensor óptico mantenga un rendimiento estable en una variedad de entornos de trabajo. . El estándar IEC 60749-15 es el estándar internacional para la prueba del ciclo de temperatura de componentes electrónicos y también tiene un valor de referencia para la prueba de cambio rápido de temperatura de sensores ópticos.4. Láser: Los estándares comunes de prueba de cambio rápido de temperatura son GB/T 2423.22-2012 "Prueba ambiental de productos eléctricos y electrónicos Parte 2: Prueba Nb: prueba de ciclo de temperatura", GB/T 2423.38-2002 "Métodos de prueba básicos para componentes eléctricos Parte 38 : Prueba de resistencia a la temperatura (IEC 60068-2-2), GB/T 13979-2009 "Método de prueba de rendimiento del producto láser", IEC 60825-1, IEC/TR 61282-10 y otras normas cubren principalmente el método de prueba de cambio de temperatura del láser y pasos de implementación específicos. Puede garantizar el rendimiento y la confiabilidad de los productos en diferentes entornos de temperatura. Entre ellos, el estándar GB/T 13979-2009 es el estándar para el método de prueba de rendimiento de productos láser en China, incluido el método de prueba ambiental del. láser bajo cambios de temperatura, lo que requiere que el láser mantenga un rendimiento estable en una variedad de entornos de trabajo. La norma IEC 60825-1 es una especificación para la integridad de los productos láser, y también existen disposiciones relevantes para la prueba de cambio rápido de temperatura de los láseres. Además, la norma IEC/TR 61282-10 es una de las directrices para el diseño de sistemas de comunicación por fibra óptica, que incluye métodos para la protección ambiental de los láseres.5. Controlador óptico: Los estándares comunes de prueba de cambio rápido de temperatura son GR-1209-CORE y GR-1221-CORE. GR-1209-CORE es un estándar de confiabilidad para equipos de fibra óptica, principalmente para la prueba de confiabilidad de conexiones ópticas, y especifica el experimento de confiabilidad de sistemas de conexión óptica. Entre ellos, el ciclo rápido de temperatura (FTC) es uno de los proyectos de prueba, que consiste en probar la confiabilidad de los módulos de fibra óptica en condiciones de temperatura que cambian rápidamente. Durante la prueba, el controlador óptico debe realizar ciclos de temperatura en el rango de -40 °C a 85 °C. Durante el ciclo de temperatura, el módulo debe mantener su funcionamiento normal y no producir una salida anormal, y el tiempo de prueba es de 100 ciclos de temperatura. . GR-1221-CORE es un estándar de confiabilidad para dispositivos pasivos de fibra óptica y es adecuado para probar dispositivos pasivos. Entre ellos, la prueba del ciclo de temperatura es uno de los elementos de prueba, que también requiere que el controlador óptico se pruebe en el rango de -40 °C a 85 °C, y el tiempo de prueba es de 100 ciclos. Ambos estándares especifican la prueba de confiabilidad del controlador óptico en un ambiente de cambio de temperatura, que puede determinar la estabilidad y confiabilidad del controlador óptico en condiciones ambientales adversas.En general, los diferentes estándares de prueba de cambio rápido de temperatura pueden centrarse en diferentes parámetros y métodos de prueba; se recomienda elegir los estándares de prueba correspondientes de acuerdo con el uso de productos específicos.Recientemente, cuando hablamos de la verificación de confiabilidad de los módulos ópticos, hay un indicador contradictorio: el número de ciclos de temperatura de la verificación del módulo óptico es 10 veces, 20 veces, 100 veces o incluso 500 veces.Definiciones de frecuencia en dos estándares de la industria:Las referencias a estas normas tienen fuentes claras y son correctas.Para el módulo óptico directo 5G, nuestra opinión es que el número de ciclos es 500 y la temperatura se establece en -40 °C ~85 °C.La siguiente es la descripción del 20/10/100/500 anterior en el texto original del GR-468(2004)Debido al espacio limitado, este artículo presenta el uso de una cámara de prueba de cambio rápido de temperatura en la industria de las comunicaciones ópticas. Si tiene alguna pregunta sobre el uso de la cámara de prueba de cambio rápido de temperatura y otros equipos de prueba ambientales, bienvenido a hablar con nosotros y aprender juntos.
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos