The Guangdong Hongzhan Dust Test Chamber is primarily used to simulate natural sand and dust environments, testing the dust resistance of various products. In industries such as electronics, automotive, and aerospace, products may face challenges from sand and dust. If a product's dust resistance is inadequate, sand and dust particles can penetrate the equipment, leading to malfunctions, performance degradation, or even damage. Therefore, accurately assessing a product's dust resistance is crucial, and the Guangdong Hongzhan Dust Test Chamber provides a reliable testing platform for companies.
(1) Box structure: combination of robust and durable and sealing
The test chamber is constructed from high-quality stainless steel, which not only provides excellent corrosion resistance and protection against sand and dust erosion but also ensures good sealing to prevent sand and dust leakage, maintaining the stability of the testing environment. The interior is meticulously divided into functional areas such as the sample testing zone, sand and dust circulation duct, heating system, and control system, facilitating both operation and maintenance.
(2) Dust generation system: accurate simulation of dust environment
This is one of the core components of the test chamber. It consists of a sand and dust storage unit, a sand and dust conveying unit, and a sand and dust dispersion unit. The storage unit can hold sand and dust of various sizes and compositions as required by the test. The conveying unit delivers the sand and dust into the test chamber using either a screw conveyor or an air conveying method. The dispersion unit ensures that the conveyed sand and dust is evenly distributed in the air, creating a stable and suitable sand and dust environment for testing, ensuring that each sample is thoroughly tested under uniform conditions.
(3) Air circulation system: create stable dust airflow
The air circulation system consists of a fan, ducts, and an air filter. The fan provides the necessary power to ensure the air circulates within the test chamber. The ducts guide the airflow effectively, ensuring that the air passes through the sand and dust generation system and the sample testing area, allowing the sand and dust to fully contact the samples. The air filter effectively removes sand and dust particles from the circulating air, protecting the fan and other equipment from damage and extending their lifespan.
(4) Control system: intelligent and accurate operation core
The control system employs an advanced programmable logic controller (PLC) and a touch screen interface. Operators can easily set and monitor test parameters, such as temperature, humidity, dust concentration, and wind speed, via the touch screen. It also features automatic adjustment capabilities, allowing it to continuously monitor and precisely adjust the various parameters inside the test chamber according to preset values, ensuring that the testing environment always meets the required standards. Additionally, the control system includes fault alarm and protection functions, which can promptly issue warning signals and take protective measures in case of any abnormal conditions, ensuring the safety of both equipment and personnel.
(5) Complete workflow: efficient and rigorous testing process
During the preparation phase, operators select appropriate sand and dust particles based on the test requirements and place them in the storage device. They then clean and inspect the test chamber and properly position the samples within the testing area. Once the test chamber is activated, the sand and dust generation system begins to operate, conveying and dispersing the sand and dust into the air. The air circulation system ensures a stable flow of sand and dust air. The control system continuously monitors and adjusts various parameters to maintain a stable test environment. During the sample testing phase, the test chamber operates according to the set schedule
When operating a constant temperature and humidity test chamber, it is important to be aware of potential issues during the process and ensure proper operation. Improper handling can easily lead to equipment malfunctions. However, over time, some faults will inevitably occur. In this article, we will discuss several common faults and their solutions.
Fault: If the temperature does not reach the set value during high-temperature testing, the first step is to check the electrical system and troubleshoot each component. If the temperature in the constant temperature and humidity test chamber rises too slowly, check the air circulation system to ensure the adjustment damper is functioning properly. If the temperature rises too quickly, adjust the PID settings. If the temperature rises too quickly and triggers the over-temperature protection, the controller may be faulty; in this case, replace the control panel or solid-state relay.
Fault: If the constant temperature and humidity test chamber fails to meet the low-temperature test requirements, investigate whether the temperature drops very slowly or if it stabilizes at a certain point before rising again. If the temperature drops very slowly, check if the chamber was dried before the low-temperature test to maintain dryness. Ensure the samples are not placed too densely to prevent inadequate air circulation. After ruling out these issues, consider whether the refrigeration system is malfunctioning; in such cases, seek professional repair from the manufacturer.
Fault: If the constant temperature and humidity test chamber malfunctions during operation, with the control panel displaying a fault message and an audio alarm, the operator can refer to the troubleshooting section of the equipment's user manual to identify the type of fault. Professional maintenance personnel should then perform the necessary repairs to ensure the test proceeds smoothly. Other environmental experimental equipment will have other conditions in use, which need to be dealt with according to the current situation.
Prefacio El propósito de este método de prueba es proporcionar un procedimiento estandarizado para evaluar la resistencia de pequeños productos electrotécnicos (principalmente componentes no herméticos) mediante una cámara de prueba ambiental húmeda y de temperatura alta y baja. Alcance Este método de prueba se aplica a las pruebas aceleradas de calor húmedo de pequeños productos electrotécnicos. Limitaciones Este método no es adecuado para verificar efectos externos en las muestras, como corrosión o deformación. Procedimiento de prueba1. Inspección previa a la prueba Las muestras deberán someterse a inspecciones visuales, dimensionales y funcionales según lo especificado en las normas pertinentes. 2. Colocación de la muestra Las muestras se colocarán en la cámara de prueba en condiciones de laboratorio de temperatura, humedad relativa y presión atmosférica. 3. Aplicación de voltaje de polarización (si corresponde) Si la norma pertinente requiere voltaje de polarización, este se aplicará solo después de que la muestra haya alcanzado el equilibrio térmico y de humedad. 4. Aumento de la temperatura y la humedad La temperatura se elevará al valor especificado. Durante este período, el aire de la cámara será reemplazado por vapor. La temperatura y la humedad relativa no deben superar los límites especificados. No se deberá formar condensación sobre la muestra. La estabilización de la temperatura y la humedad deberá lograrse en 1,5 horas. Si la duración del ensayo supera las 48 horas y no se puede completar en 1,5 horas, deberá lograrse en 3 horas. 5. Ejecución de pruebas Mantener la temperatura, la humedad y la presión en los niveles especificados según la norma correspondiente. La duración de la prueba comienza una vez que se alcanzan las condiciones de estado estable. 6. Recuperación posterior a la prueba Después de la duración de prueba especificada, las condiciones de la cámara se restablecerán a las condiciones atmosféricas estándar (1 a 4 horas). La temperatura y la humedad no deben superar los límites especificados durante la recuperación (se permite el enfriamiento natural). Se debe dejar que las muestras se estabilicen completamente antes de seguir manipulándolas. 7. Mediciones durante la prueba (si es necesario) Las inspecciones eléctricas o mecánicas durante la prueba se realizarán sin alterar las condiciones de prueba. No se deberá retirar ninguna muestra de la cámara antes de su recuperación. 8. Inspección posterior a la pruebaDespués de la recuperación (2 a 24 horas en condiciones estándar), las muestras deberán someterse a inspecciones visuales, dimensionales y funcionales según la norma pertinente. --- Condiciones de pruebaA menos que se especifique lo contrario, las condiciones de prueba consisten en combinaciones de temperatura y duración según se enumeran en la Tabla 1. --- Configuración de prueba1. Requisitos de la Cámara Un sensor de temperatura deberá monitorear la temperatura de la cámara. El aire de la cámara se purgará con vapor de agua antes de realizar la prueba. El condensado no debe gotear sobre las muestras. 2. Materiales de la cámaraLas paredes de la cámara no deben degradar la calidad del vapor ni inducir la corrosión de la muestra. 3. Uniformidad de temperaturaTolerancia total (variación espacial, fluctuación y error de medición): ±2°C. Para mantener la tolerancia a la humedad relativa (±5%), se deben minimizar las diferencias de temperatura entre dos puntos cualesquiera de la cámara (≤1,5 °C), incluso durante el aumento o la disminución de la temperatura. 4. Colocación de la muestraLas muestras no deben obstruir el flujo de vapor. Está prohibida la exposición directa al calor radiante. Si se utilizan accesorios, se deberá minimizar su conductividad térmica y su capacidad calorífica para evitar afectar las condiciones de prueba. Los materiales de fijación no deben provocar contaminación ni corrosión. 3. Calidad del agua Utilice agua destilada o desionizada con: Resistividad ≥0,5 MΩ·cm a 23°C. pH 6,0–7,2 a 23°C. Los humidificadores de cámara deben limpiarse frotando antes de introducir el agua. --- información adicionalLa Tabla 2 proporciona temperaturas de vapor saturado correspondientes a temperaturas secas (100–123 °C). En las figuras 1 y 2 se muestran diagramas esquemáticos de equipos de prueba de contenedor único y de contenedor doble. --- Tabla 1: Gravedad de la prueba| Temp. (°C) | HR (%) | Duración (h, -0/+2) | temperaturahumedad relativaTiempo (horas, -0/+2)±2℃±5%ⅠⅡⅢ110859619240812085489619213085244896Nota: La presión de vapor a 110 °C, 120 °C y 130 °C será de 0,12 MPa, 0,17 MPa y 0,22 MPa, respectivamente. --- Tabla 2: Temperatura del vapor saturado vs. humedad relativa (Rango de temperatura seca: 100–123 °C)Temperatura de saturación (℃)RelativoHumedad (%HR)100%95%90%85%80%75%70%65%60%55%50%Temperatura seca (℃) 100 100.098.697.195.593.992.190.388.486.384.181.7101 101.099.698.196.594.893.191.289.387.285.082.6102 102.0100.699.097.595.894.092.290.288.185.983.5103 103.0101.5100.098.496.895.093.192.189.086.884.3104 104.0102.5101.099.497.795.994.192.190.087.785.2105 105.0103.5102.0100.498.796.995.093.090.988.686.1106 106.0104.5103.0101.399.697.896.093.991.889.587.0107 107.0105.5103.9102.3100.698.896.994.992.790.487.9108 108.0106.5104.9103.3101.699.897.895.893.691.388.8109 109.0107.5105.9104.3102.5100.798.896.794.592.289.7110 110.0108.5106.9105.2103.5101.799.797.795.593.190.6(Se agregarán columnas adicionales para %HR y temperatura saturada según la tabla original). --- Términos clave aclarados:"Vapor saturado sin presión": entorno de alta humedad sin aplicación de presión externa. “Estado estable”: condiciones constantes mantenidas durante toda la prueba.
Sistema de refrigeraciónEl sistema de refrigeración es uno de los componentes críticos de un Cámara de prueba integral. En general, los métodos de refrigeración incluyen refrigeración mecánica y refrigeración de nitrógeno líquido auxiliar. La refrigeración mecánica emplea un ciclo de compresión de vapor, que consiste principalmente en un compresor, condensador, mecanismo del acelerador y evaporador. Si la temperatura baja requerida alcanza -55 ° C, la refrigeración de una sola etapa es insuficiente. Por lo tanto, las cámaras constantes de temperatura y humedad de LabCompanion generalmente usan un sistema de refrigeración en cascada. El sistema de refrigeración se divide en dos partes: la sección de alta temperatura y la sección de baja temperatura, cada una de las cuales es un sistema de refrigeración relativamente independiente. En la sección de alta temperatura, el refrigerante evapora y absorbe el calor del refrigerante de la sección de baja temperatura, lo que hace que vaporice. En la sección de baja temperatura, el refrigerante evapora y absorbe el calor del aire dentro de la cámara para lograr el enfriamiento. Las secciones de alta temperatura y baja temperatura están conectadas por un condensador evaporativo, que sirve como condensador para la sección de alta temperatura y el evaporador para la sección de baja temperatura. Sistema de calefacciónEl sistema de calefacción de la cámara de prueba es relativamente simple en comparación con el sistema de refrigeración. Consiste principalmente en cables de resistencia de alta potencia. Debido a la alta tasa de calentamiento requerida por la cámara de prueba, el sistema de calefacción está diseñado con una potencia significativa, y los calentadores también se instalan en la placa base de la cámara. Sistema de controlEl sistema de control es el núcleo de la cámara de prueba integral, determinando indicadores críticos como la velocidad de calentamiento y la precisión. La mayoría de las cámaras de prueba modernas usan controladores PID, mientras que algunas emplean una combinación de PID y control difuso. Dado que el sistema de control se basa principalmente en el software, generalmente funciona sin problemas durante el uso. Sistema de humedadEl sistema de humedad se divide en dos subsistemas: humidificación y deshumidificación. La humidificación generalmente se logra a través de la inyección de vapor, donde el vapor de baja presión se introduce directamente en el espacio de prueba. Este método ofrece una fuerte capacidad de humidificación, respuesta rápida y control preciso, especialmente durante los procesos de enfriamiento donde es necesaria la humidificación forzada. La deshumidificación se puede lograr a través de dos métodos: refrigeración mecánica y deshumidificación desecante. La deshumidificación de refrigeración mecánica funciona enfriando el aire por debajo de su punto de rocío, lo que hace que el exceso de humedad se condense y, por lo tanto, reduce la humedad. La deshumidificación desecante implica bombear aire fuera de la cámara, inyectar aire seco y reciclar el aire húmedo a través de un desecante para secarse antes de reintroducirlo en la cámara. La mayoría de las cámaras de prueba integrales usan el primer método, mientras que el último está reservado para aplicaciones especializadas que requieren puntos de rocío por debajo de 0 ° C, aunque a un costo más alto. SensoresLos sensores incluyen principalmente sensores de temperatura y humedad. Los termómetros y termopares de resistencia al platino se usan comúnmente para la medición de la temperatura. Los métodos de medición de la humedad incluyen el termómetro de bulbo seco y los sensores electrónicos de estado sólido. Debido a la menor precisión del método de bulbo de húmedo seco, los sensores de estado sólido lo reemplazan cada vez más en las cámaras modernas de temperatura constante y humedad. Sistema de circulación de aireEl sistema de circulación de aire generalmente consiste en un ventilador centrífugo y un motor que lo impulsa. Este sistema asegura la circulación continua de aire dentro de la cámara de prueba, manteniendo la distribución de temperatura y humedad uniformes.
El Cámaras de prueba húmedas de alta temperatura y baja temperatura es el equipo principal en las pruebas de entorno de temperatura y humedad, se utiliza principalmente para evaluar la tolerancia a la temperatura y la humedad de los productos, a fin de garantizar que nuestros productos puedan funcionar y operar normalmente en cualquier condición ambiental. Sin embargo, si la uniformidad de temperatura excede el rango de desviación permitido durante las pruebas ambientales en las cámaras, los datos obtenidos de la prueba no son confiables y no pueden usarse como la tolerancia final para pruebas de materiales de alta y baja temperatura. Entonces, ¿cuáles son las razones que pueden causar la uniformidad de la temperatura para exceder el rango de desviación permitida? 1. Las diferencias de prueba de los objetos en la cámara de prueba húmeda de alta y baja temperatura: si las pruebas muestras que en gran medida afectan la convección de calor interno de la inclinación general, inevitablemente afectará la uniformidad de la temperatura de la muestra interna. Por ejemplo, si se prueban los productos de iluminación LED, los productos en sí mismos emiten luz y calor, convirtiéndose en una carga térmica, lo que tendrá un impacto significativo en la uniformidad de la temperatura. 2. El volumen del objeto probado: si el volumen del objeto de prueba es demasiado grande, o la posición de colocación en la cámara es inapropiada, obstruirá la convección de aire dentro y también causará una desviación significativa de la uniformidad de temperatura. Para colocar el producto de prueba junto al conducto de aire afecta seriamente la circulación del aire y, por supuesto, la uniformidad de la temperatura se verá muy afectada. 3. El diseño de la estructura interna de la cámara: este aspecto se refleja principalmente en el diseño y el procesamiento de la chapa, como el diseño de conductos de aire, la colocación de tuberías de calefacción y el tamaño de la alimentación del ventilador. Todo esto afectará la uniformidad de la temperatura dentro de la inclinación. 4. Diseño de la pared interna de la curva: debido a las diferentes estructuras sobre la pared interna de la cámara de prueba, la temperatura de la pared interna también será desigual, lo que afectará la convección de calor dentro de la cámara de trabajo y causará desviación en la uniformidad de temperatura interna. 5. Los seis lados de la inclinación tienen una disipación de calor desigual: debido a los diferentes coeficientes de transferencia de calor en la parte delantera, posterior, izquierda, derecha, superior e inferior de la pared de la inclinación, algunos lados tienen agujeros de roscado, otros tienen agujeros de prueba, etc., lo que lo que causará la disipación de calor y la transferencia de calor local, lo que resulta en la distribución de la temperatura de temperatura inveniente de la comber y uniforme uniformado, la transferencia de la transferencia de la temperatura local. 6. La a prueba de fugas de la puerta de Camber: el sellado de la inclinación y la puerta no es estricta, por ejemplo, la franja de sellado no está personalizada y tiene costuras entre la puerta y la pared, la puerta filtrará el aire, lo que afectará la uniformidad de temperatura de la inclinación del agujero. En resumen, esos pueden afectar el culpable de la uniformidad de temperatura dentro de la cámara de prueba, sugerimos que puede investigar desde estos aspectos uno por uno, lo que seguramente resolverá su confusión y dificultades.