bandera
Hogar

Cámara de temperatura y humedad constantes

Cámara de temperatura y humedad constantes

  • Seis estructuras marco principales y principios operativos de temperatura constante y cámaras de prueba de humedad
    Mar 13, 2025
    Sistema de refrigeraciónEl sistema de refrigeración es uno de los componentes críticos de un Cámara de prueba integral. En general, los métodos de refrigeración incluyen refrigeración mecánica y refrigeración de nitrógeno líquido auxiliar. La refrigeración mecánica emplea un ciclo de compresión de vapor, que consiste principalmente en un compresor, condensador, mecanismo del acelerador y evaporador. Si la temperatura baja requerida alcanza -55 ° C, la refrigeración de una sola etapa es insuficiente. Por lo tanto, las cámaras constantes de temperatura y humedad de LabCompanion generalmente usan un sistema de refrigeración en cascada. El sistema de refrigeración se divide en dos partes: la sección de alta temperatura y la sección de baja temperatura, cada una de las cuales es un sistema de refrigeración relativamente independiente. En la sección de alta temperatura, el refrigerante evapora y absorbe el calor del refrigerante de la sección de baja temperatura, lo que hace que vaporice. En la sección de baja temperatura, el refrigerante evapora y absorbe el calor del aire dentro de la cámara para lograr el enfriamiento. Las secciones de alta temperatura y baja temperatura están conectadas por un condensador evaporativo, que sirve como condensador para la sección de alta temperatura y el evaporador para la sección de baja temperatura. Sistema de calefacciónEl sistema de calefacción de la cámara de prueba es relativamente simple en comparación con el sistema de refrigeración. Consiste principalmente en cables de resistencia de alta potencia. Debido a la alta tasa de calentamiento requerida por la cámara de prueba, el sistema de calefacción está diseñado con una potencia significativa, y los calentadores también se instalan en la placa base de la cámara. Sistema de controlEl sistema de control es el núcleo de la cámara de prueba integral, determinando indicadores críticos como la velocidad de calentamiento y la precisión. La mayoría de las cámaras de prueba modernas usan controladores PID, mientras que algunas emplean una combinación de PID y control difuso. Dado que el sistema de control se basa principalmente en el software, generalmente funciona sin problemas durante el uso. Sistema de humedadEl sistema de humedad se divide en dos subsistemas: humidificación y deshumidificación. La humidificación generalmente se logra a través de la inyección de vapor, donde el vapor de baja presión se introduce directamente en el espacio de prueba. Este método ofrece una fuerte capacidad de humidificación, respuesta rápida y control preciso, especialmente durante los procesos de enfriamiento donde es necesaria la humidificación forzada. La deshumidificación se puede lograr a través de dos métodos: refrigeración mecánica y deshumidificación desecante. La deshumidificación de refrigeración mecánica funciona enfriando el aire por debajo de su punto de rocío, lo que hace que el exceso de humedad se condense y, por lo tanto, reduce la humedad. La deshumidificación desecante implica bombear aire fuera de la cámara, inyectar aire seco y reciclar el aire húmedo a través de un desecante para secarse antes de reintroducirlo en la cámara. La mayoría de las cámaras de prueba integrales usan el primer método, mientras que el último está reservado para aplicaciones especializadas que requieren puntos de rocío por debajo de 0 ° C, aunque a un costo más alto. SensoresLos sensores incluyen principalmente sensores de temperatura y humedad. Los termómetros y termopares de resistencia al platino se usan comúnmente para la medición de la temperatura. Los métodos de medición de la humedad incluyen el termómetro de bulbo seco y los sensores electrónicos de estado sólido. Debido a la menor precisión del método de bulbo de húmedo seco, los sensores de estado sólido lo reemplazan cada vez más en las cámaras modernas de temperatura constante y humedad. Sistema de circulación de aireEl sistema de circulación de aire generalmente consiste en un ventilador centrífugo y un motor que lo impulsa. Este sistema asegura la circulación continua de aire dentro de la cámara de prueba, manteniendo la distribución de temperatura y humedad uniformes.
    LEER MÁS
  • Introducción a la cámara de prueba de radiación de simulación solar Introducción a la cámara de prueba de radiación de simulación solar
    Oct 16, 2024
    Introducción a la cámara de prueba de radiación de simulación solarLa cámara de prueba de irradiación de simulación solar, también conocida como "dispositivo de prueba de protección contra la radiación solar", se divide en tres tipos según los estándares y métodos de prueba: lámpara de xenón refrigerada por aire (LP/SN-500), lámpara de xenón refrigerada por agua (LP/SN-500) y lámpara de xenón de sobremesa (TXE). La diferencia radica en la temperatura, humedad, precisión, tiempo, etc. de la prueba. Es un instrumento de prueba indispensable en la serie de cámaras de prueba de envejecimiento.La cámara de prueba utiliza una fuente de luz artificial combinada con un filtro EXTERIOR G7 para ajustar la fuente de luz del sistema para cumplir con los requisitos de IEC61646 para simuladores solares mediante la simulación de la radiación de la luz solar natural. La fuente de luz del sistema anterior se utiliza para realizar la prueba de fotoenvejecimiento IEC61646 en el módulo de células solares, y la temperatura en la parte posterior del módulo debe controlarse constantemente entre 50 ± 10 °C durante la prueba. Puede controlar automáticamente la temperatura; Configure un radiómetro para controlar la irradiancia de la luz, asegurando que permanezca estable en un nivel específico y al mismo tiempo controlando el tiempo de prueba.Durante el período del ciclo de luz ultravioleta en la cámara de prueba de irradiación de simulación solar, las reacciones fotoquímicas generalmente no son sensibles a la temperatura. Pero la velocidad de cualquier reacción posterior depende de la temperatura. La velocidad de estas reacciones se acelera al aumentar la temperatura. Por lo tanto, controlar la temperatura durante la exposición a los rayos UV es fundamental. Además, es necesario asegurar que la temperatura de la prueba de envejecimiento acelerado sea consistente con la temperatura más alta a la que el material está expuesto directamente a la luz solar. En la cámara de prueba de irradiación de simulación solar, la temperatura de exposición a los rayos UV se puede establecer en cualquier temperatura entre 50 ℃ y 80 ℃ según la iluminancia y la temperatura ambiente. La temperatura de exposición a los rayos UV se ajusta mediante un controlador de temperatura sensible y un sistema de soplador para lograr una excelente uniformidad en la temperatura de esta cámara de prueba.Estimado cliente:Hola, nuestra empresa es un equipo de desarrollo de alta calidad con una sólida solidez técnica, que brinda productos de alta calidad, soluciones completas y excelentes servicios técnicos a nuestros clientes. Los principales productos incluyen cámaras de prueba de temperatura y humedad constantes sin cita previa, Máquinas de prueba de envejecimiento acelerado UV, cámaras de prueba de cambio rápido de temperatura, cámaras de pruebas ambientales sin cita previa, probadores de envejecimiento UV, cámaras de temperatura y humedad constantes, etc. Nuestra empresa se adhiere al principio de construir un negocio con integridad, mantener la calidad y esforzarse por lograr el progreso. Con un ritmo más decidido, escalamos continuamente nuevas alturas y contribuimos a la industria nacional de automatización. Damos la bienvenida a clientes nuevos y antiguos para que elijan con confianza los productos que les gustan. ¡Le atenderemos de todo corazón!
    LEER MÁS
  • Pruebas de confiabilidad de computadoras industriales Pruebas de confiabilidad de computadoras industriales
    Oct 11, 2024
    Pruebas de confiabilidad de computadoras industrialesLas computadoras industriales se pueden dividir en tres categorías según sus atributos de aplicación:(1) Clase de placa: incluye computadora de placa única (SBC), placa integrada (Embedded Board), Black Plane, módulo PC/104. (2) Clase de subsistema: incluye computadoras de placa única, placas, chasis, fuentes de alimentación y otros periféricos combinados en subsistemas operativos, como servidores industriales y estaciones de trabajo. (3) Soluciones de integración de sistemas: se refiere a un conjunto de sistemas desarrollados para un ámbito profesional, incluyendo el software y hardware necesarios y sus alrededores, como cajeros automáticos (ATM). La aplicación de las computadoras industriales cubre ampliamente cajeros automáticos, puntos de venta, equipos electrónicos médicos, máquinas de juegos, equipos de apuestas, etc. La industria multicampo hace que las computadoras industriales deben poder soportar el uso de la luz solar, temperaturas altas y bajas, ambientes húmedos y otros. Por lo tanto, la prueba de confiabilidad relevante es el foco de varios fabricantes en las pruebas de investigación y desarrollo.Pruebas de confiabilidad comunes para computadoras industriales:(1) Prueba de temperatura ampliaSegún el entorno de aplicación real, se puede dividir en cuatro categorías: 1. Exterior: especialmente para áreas con temperaturas extremadamente bajas o altas, como el norte de Europa y los países desérticos, el rango de temperatura puede ser de -50 a 70°C; 2. Espacio cerrado: por ejemplo, donde se generan fuentes de calor, como al lado de una caldera, el rango de temperatura alta es de aproximadamente 70°C; 3. Equipos móviles: como los equipos de vehículos, la temperatura alta puede ser de hasta 90°C según el área del automóvil; 4. Entornos hostiles especiales: como equipos aeroespaciales, militares, equipos de perforación petrolera.(2) Prueba de estrés por envejecimientoEl rango de temperatura es de -40 °C a 85 °C y la tasa de variación de temperatura es de 10 °C por minuto para pruebas cíclicas.(3) Prueba de alta temperatura sin vientoEn la actualidad, para evitar el polvo, se planea que las computadoras industriales estén cerradas y sin ventilador en el diseño del mecanismo, por lo que cada vez más fabricantes comienzan a prestar atención a las pruebas de alta temperatura en un ambiente sin viento para garantizar que las altas temperaturas no colapsen.Nota: Para conocer las condiciones completas de prueba de computadoras industriales, consulte a LAB COMPANION 
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos