bandera
Hogar

Horno de precisión

Horno de precisión

  • Customized Solution for Double-Door Temperature Test Equipment
    Oct 25, 2025
    1.Core customization requirement analysis 1.1 The standard box size or load-bearing capacity (such as automotive parts, large unmanned aerial vehicles, and entire cabinet servers) cannot meet the requirements. Special sample racks, trays or suspension devices are required. The test samples need to be powered on and run inside the box, and connected to cables or pipes (such as battery pack charge and discharge tests, engine component tests). Oil stains, particulate matter or corrosive gases may be released during the sample testing process. 1.2 It needs to be connected with mechanical arms and AGV carts to achieve automatic loading and unloading. The heating and cooling rates required far exceed the standard specifications (such as >15°C/min). 1.3 The equipment needs to adapt to specific room sizes, door opening sizes or floor heights. There are special requirements for the power supply (if it cannot meet 380V) and the cooling water source (if a cooling tower cannot be provided).   2. Key customized technical specifications 2.1 Customized Dimensions The internal effective space is determined entirely based on the size and quantity of the customer's samples. The minimum distance between the sample and the box wall needs to be considered to ensure uniform airflow. It is necessary to clearly define the size of the door, the material of the sealing strip, the door lock mechanism (mechanical lock, pneumatic auxiliary lock), and the size and quantity of the observation window. The inner box is usually made of SUS304 stainless steel. The outer box body can be made of high-quality steel plate with plastic spraying or SUS304. For corrosive tests, more durable materials should be specified. Test holes are used for leads. The size, quantity and position of the hole diameters (such as left or right) need to be customized, and sealing plugs or flanges should be provided. 2.2 Confirm the test interval The technical index standards for temperature are usually from -70°C to +150°C. The standard heating and cooling rate is 1 to 3°C/min. Linear rapid temperature change: 5 to 10°C/min. Nonlinear rapid temperature change: Customizable to 15°C/min or even higher. This is directly related to the power configuration of the refrigeration and heating systems and is a key factor influencing the cost. Customize stricter control accuracy, such as uniformity ≤±1.0°C and fluctuation ≤±0.5°C. 2.3 Refrigeration System Air cooling: Suitable for sites where the ambient temperature is not high and the ventilation around the equipment is good. Water cooling: It is suitable for large cooling capacity, high heat generation samples, or situations with high ambient temperatures. It is more efficient but requires a cooling tower. Cascade refrigeration: It is used for low-temperature requirements below -40°C and usually adopts two-stage cascade. 2.4 Installation Method The refrigeration system of the integrated machine is located at the top or bottom of the box, with a compact structure and convenient installation. The split-type refrigeration unit is separated from the box body and is suitable for high-power equipment. It can discharge noise and heat to the outside, but the installation is complex. 2.5 Control System and Software The controller customizes the size and brand of the color touch screen, supports multi-segment programming, program group loops, step jumps, etc. Customized LAN interface for connecting to the upper computer (computer) for data monitoring and recording. Whether it is necessary to support remote network monitoring and operation, as well as customize record intervals and storage capacity. 2.6 Independent sample over-temperature protector. Compressor overheat, overcurrent and overpressure protection; Fan overcurrent protection Cooling water cut-off protection and automatic stop test function when the door is opened; Leakage or short-circuit protection; Sound and light alarm prompt.   Customizing double-door temperature test equipment is a systematic project. The key to success lies in the clarification and refinement of the initial requirements. A detailed and unambiguous "Technical Requirements Document" serves as the cornerstone for communication between equipment suppliers and customers. It ensures that the final delivered equipment fully complies with testing, process, and site requirements, avoiding subsequent disputes and cost overruns.
    LEER MÁS
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    LEER MÁS
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    LEER MÁS
  • Lab Dust Free Oven Environmental Test Condition
    Oct 11, 2025
    Internal environmental conditions Benchmark cleanliness: At the beginning of the test, the chamber must reach the highest cleanliness level it claims (such as ISO Class 5 / Class 100). This is the premise of all tests. Before the test, the oven needs to run a long period of "self-cleaning" until the particle count shows that the concentration is stable below the standard for multiple consecutive times. Temperature and Humidity: Although the oven is a heating device, its initial state needs to be clearly defined. The initial environment for testing is usually normal temperature and humidity, for example, a temperature of 20±5°C and a relative humidity of 30-60% RH. This is crucial for testing the heating time and temperature uniformity. If the process has requirements for the dew point of the environment, it may be necessary to record the initial absolute humidity. Airflow state: The test should be conducted under the specified airflow pattern, typically in a vertical or horizontal laminar flow state. The fan must operate at the rated speed, with stable air pressure and air volume. Test load: The test is divided into two conditions: no-load and full-load. No-load is the benchmark test for equipment performance. Fill the effective working space with a fully loaded simulated load (such as metal, pallets, etc.) to simulate the harshest working conditions. Full-load testing can truly reflect the impact of products on air flow and temperature fields in actual production.   External environmental conditions 1. The cleanliness level of the external environment must be lower than or equal to the cleanliness level designed by the oven itself. For instance, when testing an oven of Class 100, it is best to do it in a room of Class 1000 or cleaner. If the external environment is too dirty, it will seriously interfere with the measurement results of the internal cleanliness of the oven when opening and closing the door or when water seeps through gaps. 2. The laboratory requires a stable temperature and humidity environment. It is generally recommended to conduct the test under standard laboratory conditions, such as 23±2°C and 50±10% RH. Avoid testing in extreme or highly volatile environments. 3. The test area should be free of strong convective winds and it is best to maintain a slight positive pressure to prevent external contaminants from entering the test area. 4. The power supply voltage and frequency should be stable within the range required by the equipment. 5. The equipment should be placed on a ground or base with less vibration. There are no large stamping equipment, fans or other strong vibration sources around.   When testing a dust-free oven, controlling the external environment is as important as measuring the internal environment. An unstable, dirty or strongly interfering external environment can lead to distorted test data and fail to truly reflect the performance of the equipment. All test conditions should be clearly recorded in the final verification report to ensure the traceability and repeatability of the tests.
    LEER MÁS
  • Construcción de un entorno de prueba seguro en una cámara de pruebas
    Sep 16, 2025
    La clave para crear un entorno de pruebas seguro para el laboratorio cámara de prueba de alta y baja temperatura Consiste en garantizar la seguridad personal, la seguridad del equipo, la seguridad de la pieza de prueba y la precisión de los datos.1. Consideraciones de seguridad personalAntes de abrir la puerta de la cámara de alta temperatura para extraer la muestra, es necesario usar correctamente el equipo de protección resistente a altas y bajas temperaturas. Al realizar operaciones que puedan causar salpicaduras o fugas de gases extremadamente calientes o fríos, se recomienda usar mascarilla o gafas protectoras.La cámara de prueba debe instalarse en un laboratorio bien ventilado y evitar operar en espacios reducidos. Las pruebas a alta temperatura pueden liberar sustancias volátiles de la pieza de prueba. Una buena ventilación puede prevenir la acumulación de gases nocivos.Asegúrese de que las especificaciones del cable de alimentación cumplan con los requisitos del equipo y que el cable de tierra esté conectado de forma segura. Es fundamental que no toque los enchufes, interruptores ni muestras con las manos mojadas para evitar descargas eléctricas. 2. Instale el equipo correctamenteSe debe mantener la distancia mínima de seguridad especificada por el fabricante (normalmente de al menos 50 a 100 centímetros) en la parte posterior, superior y lateral del equipo para garantizar el correcto funcionamiento del condensador, el compresor y otros sistemas de disipación de calor. Una ventilación deficiente puede provocar el sobrecalentamiento del equipo, una disminución del rendimiento e incluso un incendio.Se recomienda proporcionar una línea de alimentación dedicada para la cámara de prueba para evitar compartir el mismo circuito con otros equipos de alta potencia (como acondicionadores de aire e instrumentos grandes), que pueden causar fluctuaciones de voltaje o disparos.Se recomienda que la temperatura ambiente para el funcionamiento del equipo esté entre 5 °C y 30 °C. Una temperatura ambiente excesivamente alta aumentará significativamente la carga del compresor, lo que provocará una disminución de la eficiencia de refrigeración y fallos de funcionamiento. Tenga en cuenta que el equipo no debe instalarse bajo la luz solar directa, cerca de fuentes de calor ni en lugares con fuertes vibraciones. 3. Garantizar la validez y repetibilidad de las pruebasLas muestras deben colocarse en el centro de la cámara de trabajo dentro de la caja. Debe haber suficiente espacio entre ellas y con la pared de la caja (generalmente se recomienda más de 50 mm) para garantizar una circulación de aire fluida dentro de la caja y una temperatura uniforme y estable.Después de realizar pruebas de alta temperatura y alta humedad (como en una cámara de temperatura y humedad constantes), si se requieren pruebas de baja temperatura, se deben realizar operaciones de deshumidificación para evitar la formación excesiva de hielo dentro de la cámara, lo que podría afectar el rendimiento del equipo.Está estrictamente prohibido probar sustancias inflamables, explosivas, altamente corrosivas y altamente volátiles, excepto en cámaras de prueba a prueba de explosiones diseñadas específicamente para este fin. Está estrictamente prohibido colocar mercancías peligrosas como alcohol y gasolina en cámaras comunes de alta y baja temperatura. 4. Especificaciones de operación de seguridad y procedimientos de emergenciaAntes de usar el aparato, compruebe que la puerta de la caja esté bien sellada y que el bloqueo funcione correctamente. Compruebe que la caja esté limpia y libre de objetos extraños. Confirme que la curva de temperatura (programa) sea correcta.Durante el período de prueba, es necesario verificar periódicamente si el estado de funcionamiento del equipo es normal y si hay ruidos o alarmas anormales.Normas de manipulación y colocación de muestras: Use correctamente guantes para altas y bajas temperaturas. Tras abrir la puerta, incline ligeramente el cuerpo hacia un lado para evitar que la ola de calor le dé en la cara. Retire la muestra con rapidez y cuidado y colóquela en un lugar seguro.Respuesta ante emergencias: Familiarícese con la ubicación del botón de parada de emergencia del equipo o cómo cortar rápidamente el suministro eléctrico principal en caso de emergencia. Se deben tener cerca extintores de dióxido de carbono (aptos para incendios eléctricos) en lugar de extintores de agua o espuma.
    LEER MÁS

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos