bandera
Hogar

fabricantes de cámaras de pruebas ambientales

fabricantes de cámaras de pruebas ambientales

  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    LEER MÁS
  • Industrial Precision Ovens: The Key to Precise Temperature Control
    Nov 21, 2025
    In modern industrial manufacturing, industrial precision ovens are key "temperature artisans". They are widely used in electronics, aerospace, automotive, medical and other fields, providing stable performance and reliable quality for products. Gaining an in-depth understanding of their principles not only clarifies the scientific logic of industrial production, but also helps practitioners use equipment efficiently to improve benefits. (I) Heating System: The Source of Heat The heating system is the "heat source core" of the oven. The thermostat controls the thyristor through signals to adjust the heater power and regulate heat output: full power is supplied when the temperature is much lower than the set value, power gradually decreases when approaching the set value, and output stops when the set value is reached. This is energy-efficient and achieves high temperature control precision. (II) Air Circulation System: The Messenger of Heat Transfer Composed of a blower motor, extended shaft and multi-wing fan blades, the air circulation system is critical for heat transfer. The motor drives the wind wheel to rotate and form air flow, which is evenly delivered to all areas of the oven through optimized air ducts, avoiding dead corners and temperature differences. Hot air fully contacts materials during circulation to achieve rapid and uniform heating, which is essential for high-precision processes such as electronic chips and optical lenses. (III) Electrical Control System: The Core of Precise Operation The electrical control system is the core control unit of the oven. The Q8 series electrical control system adopts full-touch operation with a control precision of 0.01 level and supports multiple sensor adaptations. It has 100 built-in processes (50 steps per group), including EVT, cold output and transmission output functions. The DO channel features safe isolation and arc suppression design, enabling convenient, accurate and reliable operation that adapts to diverse control scenarios. Future Outlook: Technological Innovation Leads Development In the future, industrial precision ovens will focus on three major innovation directions: intelligence, energy conservation and environmental protection, and special process adaptation, continuously innovating to shape a new industrial future.          
    LEER MÁS
  • Maintenance Methods for Industrial Precision Oven
    Nov 20, 2025
    As core industrial equipment for precise temperature control, drying and curing, precision ovens’ operational stability directly impacts product quality and production efficiency. Scientific maintenance extends service life and ensures process parameter accuracy. Below are key methods divided into daily basic maintenance and regular in-depth maintenance. I. Daily Basic Maintenance: Safeguard Fundamental Operation Daily maintenance, the first line of stable operation defense, is performed before startup, during operation and after shutdown—simple yet critical. 1. Comprehensive Cleaning: Eliminate Impurities Wipe the oven cavity, shelves and door seal daily to remove debris, dust, cured stains or oil. Use neutral detergent and a clean cloth to avoid cavity corrosion. Regularly clean the exterior and heat dissipation holes for unobstructed heat dissipation. 2. Parameter & Safety Checks: Ensure Accuracy and Safety Verify that temperature controller, timer and other parameters match process requirements before startup, and check for stable display without drift. Inspect door interlock sensitivity, power cords, heating tube terminals and cooling fan for abnormalities. Confirm emergency stop buttons and over-temperature protection devices function properly to eliminate hidden dangers. 3. Standardized Operation: Reduce Human-induced Wear Avoid overloading workpieces and ensure proper spacing for hot air circulation to prevent local overheating. Follow the manual for temperature rise/drop—no sudden startup/shutdown or drastic adjustments to avoid furnace cracking. Turn off main power only when temperature drops below 50℃ to extend heating element life. II. Regular In-depth Maintenance: Enhance Core Performance Recommended monthly or quarterly, regular maintenance focuses on core components and requires professional technicians. 1. Heating & Circulation System Overhaul: Ensure Efficiency Inspect heating tubes for oxide layers, scale or abnormal resistance (replace if needed), and clean/fasten junction box terminals with insulating grease. Disassemble fan impellers to remove dust and oil, lubricate bearings, replace damaged seals and adjust air duct baffles for uniform hot air circulation. 2. Temperature Control Calibration: Improve Accuracy Calibrate temperature sensors with a standard thermometer—adjust parameters or replace sensors if deviation is excessive. Inspect signal transmission lines for interference or poor contact. Verify multi-stage heating curve accuracy for programmable ovens. 3. Furnace Structure Maintenance: Extend Service Life Check insulation layers for damage and refill insulation material if heat dissipation is abnormal. Replace aged or deformed door seals. Repair the cavity’s high-temperature resistant coating to prevent rusting.
    LEER MÁS
  • Common Faults and Practical Solutions for High-Low Temperature Humidity Test Chambers
    Nov 19, 2025
    High and low temperature humidity test chambers are key reliability testing equipment, widely used in electronics, automotive and biomedicine. Their stability directly affects test accuracy. This article summarizes common faults and solutions for efficient troubleshooting. I. Temperature-related Faults: Core Impact on Test Accuracy 1. Failure to Reach Set Temperature Fault Performance: Fails to reach target temperature when heating; slow or no cooling.Possible Causes: Abnormal power voltage, burned heater, compressor failure, fan stop, air duct blockage.Solutions: Verify power matches rated specs (220V/380V); check fan operation and clean duct debris; contact professionals to replace faulty parts if heater/compressor fails. 2. Large Temperature Fluctuation and Poor Uniformity Fault Performance: Excessive temperature difference in the chamber or frequent fluctuations near set value.Possible Causes: Abnormal fan speed, damaged air duct seals, over-dense samples blocking airflow.Solutions: Arrange samples for ventilation; check fan stability and replace damaged seals promptly. 3. Severe Temperature Overshoot Fault Performance: Temperature overshoots set value significantly before dropping.Possible Causes: Improper controller settings, energy regulation system failure.Solutions: Restart to reset parameters; if unresolved, have technicians calibrate controller or overhaul regulation modules. II. Humidity-related Faults: Directly Linked to Test Environment Stability 1. Failure to Reach Set Humidity Fault Performance: Slow or no humidification.Possible Causes: Empty humidification tank, faulty water level sensor, burned humidifier tube, blocked solenoid valve.Solutions: Replenish water; clean valve filter; replace tube or repair sensor if humidifier fails to heat. 2. High Humidity That Cannot Be Reduced Fault Performance: Humidity remains above set value; dehumidification fails.Possible Causes: Faulty dehumidification system, poor chamber sealing, high ambient humidity.Solutions: Check door seals and reduce ambient humidity; report for repair if dehumidification module fails. 3. Abnormal Humidity Display Fault Performance: Humidity reading jumps, disappears or deviates greatly from reality.Possible Causes: Aging humidity sensor, contaminated probe.Solutions: Wipe probe with clean cloth; calibrate or replace sensor if inaccuracy persists. III. Operation and Circulation Faults: Ensure Basic Equipment Operation 1. Fan Not Rotating or Making Abnormal Noise Possible Causes: Motor damage, foreign objects in fan blades, worn bearings.Solutions: Clean debris after power-off; replace motor or bearings if fault persists. 2. Compressor Abnormality Fault Performance: Compressor fails to start or stops frequently after starting.Possible Causes: Power phase loss, overload protection trigger, refrigerant leakage.Solutions: Check three-phase wiring; retry after overload reset; report for refrigerant and compressor inspection if fault recurs. 3. Equipment Alarm Fault Performance: Alarms like "phase loss" or "overload" activate.Possible Causes: Triggered protection from wrong phase sequence, unstable voltage or overheated components.Solutions: Troubleshoot per alarm; restart after 30-minute cooldown for overload; report if ineffective. IV. Core Notes 1. Always power off before troubleshooting to avoid shock or component damage.2. Contact professionals for complex repairs (compressors, refrigerants, circuit boards); do not disassemble yourself.3. Regularly clean air ducts, filters and sensors to reduce over 80% of common faults.
    LEER MÁS
  • Walk-in Environmental Test Chambers: The Hidden Tech Gem in Industrial Testing
    Nov 18, 2025
    In industrial manufacturing's "quality defense line", walk-in environmental test chambers are low-key yet critical. As "environmental simulation masters", they replicate extreme conditions from polar cold to tropical heat, testing large equipment and batch products. Their hidden technical strengths merit in-depth exploration. I. Spacious Interior for Flexible Adaptation to Diverse Testing Needs The "walk-in" design is a core breakthrough. With  several to dozens of cubic meters of space, it accommodates large products (automotive parts, electronic devices) and enables batch testing of small/medium items. New energy vehicle battery packs and rail transit systems can be tested integrally without disassembly. Flexible racks and zoning fit various sample shapes, solving traditional equipment's "unfit and unstable" issues. II. Precise Temperature Control for Highly Simulating Diverse Extreme Environments Precise temperature control is its core advantage, with a temperature range of -70℃ to 250℃ and humidity of 20%RH to 98%RH, replicating high-altitude, desert and coastal environments. Using PID algorithms and multi-point sensing, temperature/humidity fluctuations are controlled within ±0.5℃ and ±2%RH, ensuring reliable data. It simulates high-altitude conditions for aerospace and verifies consumer electronics' performance in extremes to support product iteration. III. Energy Conservation and Environmental Protection for Long-term Operating Cost Optimization To address high energy consumption, it adopts variable frequency compressors and low-power heating modules for intelligent power adjustment. Double-layer vacuum insulation reduces heat exchange, and high-end models feature waste heat recovery. Energy consumption is cut by over 30% vs. traditional equipment, saving tens of thousands in annual electricity costs. Stable operation lowers maintenance needs and extends service life, reducing long-term costs. IV. Structural Selection and Customization Services Lab Companion's walk-in chambers have two main structures: integral welded and assembled, with diverse specifications compatible with multiple refrigerants. Assembled models use independent panels fixed by interlocks and reinforcing bolts, simplifying transportation and installation. Integral welded models offer better performance, with wider temperature/humidity ranges and faster temperature change rates. In addition, you can choose a suitable model based on your needs. Lab Companion provides customized services if existing specifications are insufficient . V. Conclusion: The "Core Driving Force" for Industrial Quality Upgrading With large space, precise control, energy efficiency and durability, these chambers are industrial testing's "quality stewards". Critical for improving product reliability in manufacturing transformation, they will upgrade to more precise and intelligent versions to empower industrial high-quality development.
    LEER MÁS
  • Sample Restrictions for All Models of Test Chambers
    Nov 17, 2025
        As core equipment in industrial production and scientific research that accurately simulates complex environmental conditions such as high and low temperatures, and humidity, the safe and stable operation of test chambers not only directly affects the test process, but is also closely related to the characteristics of test samples. To maximize the protection of the performance of the equipment's core components, avoid safety risks during operation, and ensure the accuracy and reliability of the final test data, all models of test chambers have established clear and strict restriction standards for sample selection. Testing and storage of the following models of samples are strictly prohibited. The specific prohibited scope includes: • Flammable substances such as gasoline and ethanol, explosive substances such as gunpowder and acetylene, and volatile substances such as methanol and ether; • Corrosive substances such as strong acids, strong alkalis and various corrosive solvents that may damage the equipment cavity; • Biological samples such as microorganisms, cell tissues and living organisms that may cause pollution or safety hazards; • Samples that are strong electromagnetic emission sources such as high-frequency emission modules, which may interfere with the equipment's control system; • Radioactive substances with radiation hazards such as uranium and cobalt; • Highly toxic substances that pose serious hazards to humans and the environment, such as cyanides and highly toxic pesticides; • All models of samples that may generate flammable, explosive, volatile, highly toxic, corrosive, or radioactive substances due to changes in temperature and humidity during the testing or storage process.     Before starting the test chamber, operators must confirm the specific properties of the samples through professional testing methods or authoritative materials, and strictly abide by the above restriction requirements. If there is any doubt in judging the applicability of the samples, they should consult the technical personnel of the equipment manufacturer or experts in related fields immediately, and must not operate blindly based on experience. This is to avoid equipment cavity damage, control system failure, safety accidents, or serious deviations in test data caused by illegal use.
    LEER MÁS
  • User Preparation Before Delivery of High and Low Temperature (Humidity) Test Chamber
    Nov 15, 2025
    1. Preparation for Load-bearing and Dimensional Adaptation • The load-bearing capacity of the site floor shall strictly meet the core requirement of ≥500kg/m², which is a key prerequisite for ensuring the long-term stable operation of the equipment and avoiding equipment deformation or safety hazards caused by insufficient load-bearing capacity. • It is necessary to accurately confirm the external dimensions of the test chamber specified in the technical specification in advance. Combined with the on-site actual survey of the transportation and installation path, ensure that the equipment can smoothly pass through all key passage nodes such as elevators, laboratory doors and corridors, so as to avoid delay in delivery and installation due to inconsistent dimensions. 2. Preparation for Installation Site Conditions • The floor of the installation site shall be flat without protrusions and depressions, and the ventilation conditions shall meet the basic standards for equipment operation. At the same time, there shall be no flammable, explosive, corrosive gases or dust in the environment, as such substances will seriously affect the service life of equipment components and the accuracy of test data. • Strong electromagnetic radiation sources such as high-voltage lines and large motors should be actively avoided near the equipment installation location, as strong electromagnetic interference may cause disorder of the equipment control system, thereby affecting the temperature and humidity control accuracy of the test chamber. • A floor drain that meets the drainage standards must be provided within 2 meters of the equipment's refrigeration unit. This requirement is to timely discharge the condensed water generated during the operation of the refrigeration system, so as to avoid water accumulation soaking the equipment or polluting the site environment. • Sufficient maintenance and operation space shall be reserved around the equipment in accordance with specifications. The specific requirements strictly follow the following standards: Area A ≥80cm, Area B ≥60cm, Area C ≥110cm, Area D ≥110cm. Sufficient space is a necessary guarantee for later equipment maintenance, calibration and component replacement.
    LEER MÁS
  • High-Low Temperature and Humidity Test Chamber: Comprehensive Safety Protection
    Nov 14, 2025
    Widely used in electronics, automotive, aerospace, etc. It tests product reliability by simulating extreme environments and is key equipment for product quality and safety. 1. Refrigeration system safety protection Compressor overpressure protection: Activates pressure relief when overpressure, preventing explosion and ensuring safety. Compressor overheating protection: Monitors temperature in real time, cuts power when exceeding threshold to avoid burnout and extend life. Compressor over-current protection: Monitors current, cuts power when exceeding rated value to prevent overload or motor damage. 2. Test area safety protection Adjustable over-temperature protection: Flexible threshold setting, automatically controls temperature (reduces power, starts cooling) when exceeding, protecting samples and equipment. First-layer high/low temperature over-temperature protection: Sets high/low temperature protection values for operating temperature, stops heating/cooling when exceeding range. Second-layer high-temperature over-temperature protection: Electronic device with high-precision detection, cuts heating power when exceeding first-layer range. Third-layer high-temperature over-temperature protection: Last barrier, cuts all heating power and alarms when first two layers fail. Fault protection: Cuts control power when faulty, indicates cause and outputs alarm for easy troubleshooting. 3. Other safety protections Total power phase sequence and open-phase protection: Monitors phase sequence and open-phase, cuts power when abnormal to prevent damage. Short-circuit protection: Quickly cuts circuit (fuse blowing, breaker tripping) during short circuit to avoid fire, etc. Leakage/surge protection: ELB prevents electric shock, fuse protects circuit, RC device suppresses surges. Water-cut and dry-burning protection: Cuts power for humidity-related equipment and electric heating when water is cut off to prevent dry burning. 4. Summary     The safety protection system of the high-low temperature and humidity test chamber covers core working units and key auxiliary links, forming a comprehensive and multi-level protection closed loop. Through accurate monitoring, rapid response and effective intervention, each protection device not only ensures the long-term stable operation of the equipment and extends its service life, but also safeguards the safety of test samples and personnel operation. It serves as the core support for reliable test processes and accurate results, building a solid safety barrier for product quality verification.
    LEER MÁS
  • Differences between High and Low Temperature Test Chamber and Constant Temperature Test Chamber
    Nov 13, 2025
        In environmental reliability testing, high-low temperature humidity test chambers and constant temperature and humidity test chambers are easily confused due to similar names, but they differ significantly in testing capabilities, applications and technical characteristics. Accurate distinction and selection are key to ensuring valid test data. This blog will analyze the core differences and provide selection suggestions. I. Core Definition: Essential Distinction of Functional Boundaries     The core difference between the two starts with functional positioning, which directly determines the applicable scenarios.     The core of the constant temperature and humidity test chamber is "maintaining stability". It can accurately control and maintain the set temperature and humidity for a long time, and is used to simulate the long-term performance of products in specific environments, such as electronic component stability testing and textile temperature-humidity sensitivity testing. Its core requirement is "steady-state environmental performance verification".     The high-low temperature humidity test chamber focuses on "dynamic simulation". In addition to precise temperature and humidity control, it has a wide-range fluctuation capability, which can simulate environments such as high-low temperature cycles and alternating humidity and heat, such as extreme temperature differences during product transportation and diurnal temperature-humidity changes of outdoor equipment. Its core requirement is "dynamic environmental reliability verification". II. Key Differences: Multi-dimensional Analysis from Technology to Application 1. Temperature and Humidity Range and Fluctuation Capacity     The constant temperature and humidity chamber has a mild temperature and humidity range (temperature 0℃-100℃, humidity 30%-95%RH) and high control precision (temperature fluctuation ±0.5℃, humidity ±2%RH), but no extreme temperature-humidity impact capability.     The high-low temperature humidity chamber has a wider temperature and humidity coverage (temperature -70℃~200℃, humidity 10%-98%RH) and rapid change capability (heating rate 3℃/min-15℃/min, cooling rate 1℃/min-10℃/min), which can realize rapid cycle switching between "high temperature and high humidity - low temperature and low humidity"—a feature unavailable in the former. 2. Differences in Core Technical Architecture     The constant temperature and humidity chamber adopts single-stage compression refrigeration, conventional resistance heating, and steam or ultrasonic humidification. Its system design focuses on "energy saving and stability", with simple structure and low operating cost.     To meet extreme needs, the high-low temperature humidity chamber uses cascade refrigeration, rapid-heating tubes, and its humidity system includes a fast-response dehumidification module, with a thicker insulation layer on the chamber wall. Its technical complexity and manufacturing cost are much higher than the former. 3. Applicable Scenarios and Testing Purposes     The constant temperature and humidity chamber is used for steady-state environmental adaptability testing, such as electronic component aging and pharmaceutical storage simulation, to verify the performance consistency and durability of products in a fixed environment.     The high-low temperature humidity chamber focuses on dynamic reliability testing, such as high-low temperature cycling of auto parts and extreme environment simulation of aerospace products, to expose product defects (material aging, structural deformation, etc.) under drastic environmental changes.     In summary, the constant temperature and humidity chamber guards the steady-state environment, while the high-low temperature humidity chamber challenges the dynamic environment. There is no absolute advantage or disadvantage between the two. Only by matching needs, clarifying scenarios and budgets can the test truly guarantee product quality.
    LEER MÁS
  • Top Environmental Test Chamber Partner, Your Trusted Choice
    Nov 08, 2025
        Environmental test chambers simulate complex conditions such as high/low temperatures and humidity, widely serving industries including electronics, automotive, aerospace, materials, and medical devices. Their core function is to verify the tolerance of products and materials, enabling early defect detection, ensuring product reliability, facilitating industry compliance, and reducing after-sales costs. They are critical equipment for R&D and quality control.     Founded in 2005, Lab Companion specializes in the R&D and manufacturing of environmental simulation equipment. Since its establishment, the company has deeply cultivated core technologies and obtained multiple patent certifications, demonstrating strong technical capabilities in this field. Our cooperative clients cover numerous industries such as aviation, aerospace, ordnance, marine engineering, nuclear power, communications, automotive, rail transit, electronics, semiconductors, and new energy.         Lab Companion offers a comprehensive product portfolio, including high-low temperature alternating humidity test chambers, rapid temperature change test chambers, thermal shock test chambers, walk-in environmental test chambers, high-low temperature low-pressure test chambers, temperature-humidity-vibration combined test chambers, and customized non-standard environmental test equipment. Each product line provides multiple options for models, sizes, and temperature-humidity parameters to accurately meet diverse application needs.         In addition, we deliver premium pre-sales and after-sales services, offering full-cycle support from product selection to after-sales guarantee to ensure your peace of mind. Should you have any cooperation intentions or related inquiries, please feel free to contact us at any time!
    LEER MÁS
  • Aplicación de los medidores de caudal de temperatura Aplicación de los medidores de caudal de temperatura
    Jul 09, 2025
    Un medidor de flujo de temperatura es un instrumento de precisión que mide el flujo y la temperatura de gases, ampliamente utilizado en monitorización ambiental, sistemas de aire acondicionado, fabricación industrial y campos relacionados. Su principio fundamental consiste en detectar las variaciones de temperatura causadas por el flujo de gas para calcular con precisión la velocidad y el volumen del flujo de aire, proporcionando así a los usuarios datos precisos. Sus principales características son su alta precisión y rápida respuesta. Equipado habitualmente con sensores avanzados, puede capturar rápidamente cambios mínimos en el caudal y proporcionar información en tiempo real. Su precisión de medición se mantiene excepcional incluso en condiciones ambientales complejas, lo cual es especialmente crucial para aplicaciones industriales que requieren un control estricto del flujo de aire y la temperatura. Además, su funcionamiento es relativamente sencillo: los usuarios solo necesitan una configuración básica para obtener los datos necesarios. Este diseño intuitivo facilita su manejo tanto para profesionales como para usuarios generales. Muchos modelos modernos también incorporan pantallas digitales con interfaces intuitivas, lo que permite a los usuarios comprender rápidamente el estado actual y mejora la usabilidad. El instrumento demuestra una excelente estabilidad, manteniendo mediciones consistentes durante largos periodos sin desviaciones significativas, lo que garantiza la fiabilidad de los datos. Gracias a los continuos avances tecnológicos, muchos dispositivos integran ahora funciones de almacenamiento y transmisión de datos, lo que permite a los usuarios revisar y analizar datos históricos después de las pruebas para una toma de decisiones informada. En conclusión, el anemómetro térmico se ha convertido en una herramienta indispensable en diversas industrias gracias a su alta precisión, respuesta rápida, facilidad de uso y excelente estabilidad. Tanto en la vida diaria como en el ámbito profesional, dominar este instrumento no solo mejora la eficiencia laboral, sino que también proporciona un apoyo crucial para la investigación científica y las aplicaciones de ingeniería. Como tecnología de medición esencial en la ciencia moderna, desempeña un papel fundamental en el avance tecnológico.
    LEER MÁS
  • ¿Qué debo hacer si la cámara de prueba de alta y baja temperatura tiene problemas? ¿Qué debo hacer si la cámara de prueba de alta y baja temperatura tiene problemas?
    Jun 23, 2025
    Cámara de prueba de alta y baja temperatura Es posible que se encuentren diversos problemas durante el proceso de uso, a continuación se presenta un resumen de posibles fallas y sus causas desde diferentes perspectivas:1. Fallo del sistema centralTemperatura fuera de controlMotivo: Los parámetros de control PID están desequilibrados, la temperatura ambiente excede el rango de diseño del equipo, interferencia de temperatura multizona.Caso: En un taller con entorno especial, la alta temperatura externa provoca una sobrecarga del sistema de refrigeración, lo que produce una deriva de temperatura.La humedad es anormalMotivo: la mala calidad del agua de humidificación provoca la formación de incrustaciones y el bloqueo de las boquillas, fallas en la lámina piezoeléctrica del humidificador ultrasónico y una regeneración incompleta del desecante de deshumidificación.Fenómeno especial: durante la prueba de alta humedad se produce condensación inversa, lo que hace que la humedad real en la caja sea inferior al valor establecido.2. Problemas mecánicos y estructuralesEl flujo de aire está desorganizadoRendimiento: Hay un gradiente de temperatura de más de 3 ℃ en el área de muestra.Causa raíz: el estante de muestra personalizado cambió el diseño original del conducto de aire y la acumulación de suciedad en las aspas del ventilador centrífugo provocó la destrucción del equilibrio dinámico. falla de selladoNueva falla: la fuerza magnética de la puerta de sellado electromagnético disminuye a baja temperatura y la tira de sellado de silicona se vuelve quebradiza y se agrieta después de -70 ℃.3. Sistema eléctrico y de controlFallo del control inteligenteNivel de software: después de la actualización del firmware, se produce un error de configuración de la zona muerta de temperatura y el desbordamiento de datos históricos hace que el programa se bloquee.Nivel de hardware: la avería del relé de estado sólido SSR provoca un calentamiento continuo y la comunicación del bus está sujeta a la interferencia electromagnética del inversor.Vulnerabilidades de protección de seguridadPeligros ocultos: el fallo sincrónico del relé de protección de triple temperatura y la falsa alarma provocada por la expiración de la calibración del detector de refrigerante.4. Desafíos de las condiciones laborales especialesChoque de temperatura específicoProblema: de -40 ℃ a +150 ℃, la soldadura del evaporador se agrieta por tensión y la diferencia en el coeficiente de expansión térmica provoca la falla del sello de la ventana de observación.Atenuación del funcionamiento a largo plazoDegradación del rendimiento: después de 2000 horas de funcionamiento continuo, el desgaste de la placa de válvulas del compresor provoca una disminución del 15 % en la capacidad de refrigeración y una deriva del valor de resistencia del tubo de calentamiento de cerámica.5. Impacto ambiental y de mantenimientoAdaptación de infraestructuraCaso: La oscilación de potencia del calentador PTC causada por la fluctuación del voltaje de la fuente de alimentación y el efecto de golpe de ariete del sistema de agua de enfriamiento dañaron el intercambiador de calor de placas.Puntos ciegos del mantenimiento preventivoLección: Ignorar la presión positiva de la caja provoca la entrada de agua en la cámara de cojinetes y el crecimiento de biopelícula y bloqueos en la tubería de descarga de condensado.6. Puntos críticos de las tecnologías emergentesNueva aplicación de refrigeranteDesafíos: problemas de compatibilidad del aceite del sistema después de que R448A reemplaza a R404A y problemas de sellado de alta presión de los sistemas de refrigeración de CO₂ subcrítico.Riesgos de la integración del IoTError: El protocolo de control remoto es atacado maliciosamente, lo que provoca la manipulación del programa y una falla del almacenamiento en la nube, lo que resulta en la pérdida de la cadena de evidencia de prueba.Recomendaciones de estrategiaDiagnóstico inteligente: configure el analizador de vibraciones para predecir la falla del cojinete del compresor y utilice una cámara termográfica infrarroja para escanear los puntos de conexión eléctrica periódicamente.Diseño confiable: los componentes clave como el evaporador están hechos de acero inoxidable SUS316L para mejorar la resistencia a la corrosión y se agregan módulos de control de temperatura redundantes al sistema de control.Innovación en mantenimiento: implementar un plan de mantenimiento dinámico basado en las horas de operación y establecer un sistema anual de pruebas de pureza del refrigerante.Las soluciones a estos problemas deben analizarse en función del modelo específico del equipo, el entorno de uso y el historial de mantenimiento. Se recomienda establecer un mecanismo de mantenimiento colaborativo que incluya al fabricante del equipo, instituciones de prueba externas y equipos técnicos de usuarios. Para los elementos de prueba clave, se recomienda configurar un sistema de reserva activa con dos máquinas para garantizar la continuidad de las pruebas.
    LEER MÁS
1 2
Un total de 2paginas

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos