bandera
Hogar

Blog

Blog

  • CEI 60068-2 CEI 60068-2
    Sep 26, 2024
    CEI 60068-2 Instrucciones:IEC(Asociación Electrotécnica Internacional) es la organización internacional no gubernamental de normalización eléctrica más antigua del mundo, para el sustento de las personas de los productos electrónicos para desarrollar especificaciones y métodos de prueba relevantes, tales como: placa base, computadoras portátiles, tabletas, teléfonos inteligentes, pantallas LCD, consolas de juegos... El espíritu principal de su prueba se extiende desde IEC, cuyo principal representante es IEC60068-2, las condiciones de prueba ambiental su [prueba ambiental] se refiere a la muestra expuesta a ambientes naturales y artificiales, pero el rendimiento de su Se evalúan las condiciones reales de uso, transporte y almacenamiento. La prueba ambiental de la muestra puede ser uniforme y lineal mediante el uso de estándares estandarizados. Las pruebas ambientales pueden simular si el producto puede adaptarse a los cambios ambientales (temperatura, humedad, vibración, cambio de temperatura, choque térmico, niebla salina, polvo) en diferentes etapas (almacenamiento, transporte, uso). Y verifique que las características y la calidad del producto en sí no se vean afectadas por él, baja temperatura, alta temperatura, el impacto de la temperatura puede producir tensión mecánica, esta tensión hace que la muestra de prueba sea más sensible a la prueba posterior, el impacto y la vibración pueden producir tensión mecánica. estrés, este estrés puede dañar inmediatamente la muestra, presión del aire, calor húmedo alternativo, calor húmedo constante, aplicación de corrosión de estas pruebas y pueden continuar los efectos de las pruebas de estrés térmico y mecánico.Intercambio de especificaciones IEC importantes:IEC69968-2-1- FríoPropósito de la prueba: Probar la capacidad de los componentes, equipos u otros productos componentes de automóviles para operar y almacenar a bajas temperaturas.Los métodos de prueba se dividen en:1.Aa: Método de cambio repentino de temperatura para muestras no térmicas2.Ab: Método de gradiente de temperatura para muestras no térmicas3.Anuncio: método de gradiente de temperatura de muestra termogénicaNota:Automóvil club británico:1. Prueba estática (sin fuente de alimentación).2. Primero enfríe a la temperatura especificada de la especificación antes de colocar la pieza de prueba.3. Después de la estabilidad, la diferencia de temperatura de cada punto de la muestra no excede ±3 ℃.4. Una vez finalizada la prueba, la muestra se coloca bajo presión atmosférica estándar hasta que la niebla se elimine por completo: no se agrega voltaje a la muestra durante el proceso de transferencia.5. Mida después de regresar a la condición original (al menos 1 hora).abdominales:1. Prueba estática (sin fuente de alimentación).2. La muestra se coloca en el gabinete a temperatura ambiente y el cambio de temperatura del gabinete no excede 1 ℃ por minuto.3. La muestra se mantendrá en el gabinete después de la prueba y el cambio de temperatura del gabinete no excederá 1 ℃ por minuto para volver a la presión atmosférica estándar; La muestra no debe cargarse durante el cambio de temperatura.4. Mida después de regresar a la condición original (al menos 1 hora). (La diferencia entre la temperatura y la temperatura del aire es más de 5 ℃).C.A:1. Prueba dinámica (más fuente de alimentación) cuando la temperatura de la muestra es estable después de la carga, la temperatura de la superficie de la muestra es el punto más caliente.2. La muestra se coloca en el gabinete a temperatura ambiente y el cambio de temperatura del gabinete no excede 1 ℃ por minuto.3. La muestra debe mantenerse en el gabinete después de la prueba, y el cambio de temperatura del gabinete no debe exceder 1 ℃ por minuto y volver a la presión atmosférica estándar; La muestra no debe cargarse durante el cambio de temperatura.4. Mida después de regresar a la condición original (al menos 1 hora).Condiciones de prueba:1. Temperatura:-65,-55,-40,-25,-10,-5,+5°C2. Tiempo de residencia: 16/2/72/96 horas.3. Tasa de variación de temperatura: no más de 1 ℃ por minuto.4. Error de tolerancia: +3°C.Configuración de prueba:1. Las muestras que generen calor deben colocarse en el centro del gabinete de prueba y la pared del gabinete > 15 cm.Muestra a espécimen > gabinete de prueba de 15 cm a relación de volumen de prueba > 5:1.2. Para muestras que generen calor, si se utiliza convección de aire, el caudal debe mantenerse al mínimo.3. La muestra se debe desembalar y el dispositivo debe tener las características de alta conducción de calor. IEC 60068-2-2- Calor secoPropósito de la prueba: Probar la capacidad de los componentes, equipos u otros productos componentes para operar y almacenar en ambientes de alta temperatura.El método de prueba es:1. Ba: método de cambio repentino de temperatura para muestras no térmicas2.Bb: Método de gradiente de temperatura para muestras no térmicas3.Bc: Método de cambio repentino de temperatura para muestras termogénicas4.Bd: Método de gradiente de temperatura para muestras termogénicasNota:Licenciado en Letras:1. Prueba estática (sin fuente de alimentación).2. Primero enfríe a la temperatura especificada de la especificación antes de colocar la pieza de prueba.3. Después de la estabilidad, la diferencia de temperatura de cada punto de la muestra no supera los +5 ℃.4. Una vez completada la prueba, coloque la muestra bajo presión atmosférica estándar y vuelva a su estado original (al menos 1 hora).Cama y desayuno:1. Prueba estática (sin fuente de alimentación).2. La muestra se coloca en el gabinete a temperatura ambiente, y el cambio de temperatura del gabinete no excede 1 ℃ por minuto, y la temperatura se reduce al valor de temperatura especificado en la especificación.3. La muestra se mantendrá en el gabinete después de la prueba y el cambio de temperatura del gabinete no excederá 1 ℃ por minuto para volver a la presión atmosférica estándar; La muestra no debe cargarse durante el cambio de temperatura.4. Mida después de regresar a la condición original (al menos 1 hora).Antes de Cristo:1. Prueba dinámica (fuente de alimentación externa) Cuando la temperatura de la muestra es estable después de la carga, la diferencia entre la temperatura del punto más caliente de la superficie de la muestra y la temperatura del aire es superior a 5 ℃.2. Calentar hasta la temperatura especificada en la especificación antes de colocar la pieza de prueba.3. Después de la estabilidad, la diferencia de temperatura de cada punto de la muestra no supera los +5 ℃.4. Una vez completada la prueba, la muestra se colocará bajo la presión atmosférica estándar y la medición se llevará a cabo después de que se recupere su condición original (al menos 1 hora).5. La temperatura promedio del punto decimal en el plano de 0~50 mm en la superficie inferior de la muestra.Bd:1. Prueba dinámica (fuente de alimentación externa) cuando la temperatura de la muestra es estable después de la carga, la temperatura del punto más caliente en la superficie de la muestra es más de 5°C diferente de la temperatura del aire.2. La muestra se coloca en el gabinete a temperatura ambiente y el cambio de temperatura del gabinete no excede 1 ℃ por minuto y se eleva al valor de temperatura especificado.3. Volver a la presión atmosférica estándar; La muestra no debe cargarse durante el cambio de temperatura.4. Mida después de regresar a la condición original (al menos 1 hora).Condiciones de prueba:1. La temperatura 1000,800,630,500,400,315,250,200,175,155,125,100,85,70,55,40,30 ℃.1. Tiempo de residencia: 16/2/72/96 horas.2. Tasa de variación de temperatura: no más de 1 ℃ por minuto. (Promedio en 5 minutos)3. Error de tolerancia: tolerancia de ±2 ℃ por debajo de 200 ℃. (tolerancia de 200 ~ 1000 ℃ ± 2%) IEC 60068-2-2- Método de prueba Ca: Calor húmedo constante1. Propósito de la prueba:El propósito de este método de prueba es determinar la adaptabilidad de componentes, equipos u otros productos a la operación y almacenamiento a temperatura constante y alta humedad relativa.Paso 2: AlcanceEste método de prueba se puede aplicar tanto a muestras que disipan calor como a las que no lo disipan.3. Sin límites4. Pasos de prueba:4.1 Las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes antes de realizar el ensayo.4.2 La muestra de prueba debe colocarse en el gabinete de prueba de acuerdo con las especificaciones pertinentes. Para evitar la formación de gotas de agua en la muestra de prueba después de colocarla en el gabinete, es mejor precalentar la temperatura de la muestra de prueba a las condiciones de temperatura en el gabinete de prueba con anticipación.4.3 La muestra se aislará de acuerdo con la residencia especificada.4.4 Si se especifica en las especificaciones pertinentes, las pruebas y mediciones funcionales se realizarán durante o después de la prueba, y las pruebas funcionales se realizarán de acuerdo con el ciclo requerido en las especificaciones, y las piezas de prueba no se moverán fuera de la prueba. gabinete.4.5 Después del ensayo, la muestra debe colocarse en condiciones atmosféricas estándar durante al menos una hora y como máximo dos horas para que vuelva a su estado original. Dependiendo de las características de la muestra o de las diferentes energías del laboratorio, la muestra se puede retirar o retener en el gabinete de prueba para esperar la recuperación, si se desea que el tiempo de extracción sea lo más corto posible, preferiblemente no más de cinco minutos. si se mantiene en el gabinete, la humedad debe reducirse a 73 % a 77 % H.R. en 30 minutos, mientras que la temperatura también debe alcanzar la temperatura del laboratorio en 30 minutos en un rango de +1 ℃.5. Condiciones de prueba5.1 Temperatura de prueba: La temperatura en el gabinete de prueba debe controlarse dentro del rango de 40+2°C.5.2 Humedad relativa: La humedad en el gabinete de prueba debe controlarse a 93 (+2/-3)% H.R. dentro del rango.5.3 Tiempo de residencia: El tiempo de residencia puede ser de 4 días, 10 días, 21 días o 56 días.5.4 Tolerancia de prueba: la tolerancia de temperatura es de +2 ℃, error en la medición del contenido del paquete, cambio lento de temperatura y diferencia de temperatura en el gabinete de temperatura. Sin embargo, para facilitar el mantenimiento de la humedad dentro de un cierto rango, la temperatura de dos puntos cualesquiera en el gabinete de prueba debe mantenerse dentro del rango mínimo en la medida de lo posible en cualquier momento. Si la diferencia de temperatura supera 1 ° C, la humedad cambia más allá del rango permitido. Por lo tanto, es posible que incluso los cambios de temperatura a corto plazo deban controlarse dentro de 1 ° C.6. Configuración de prueba6.1 Se deben instalar dispositivos sensores de temperatura y humedad en el gabinete de prueba para monitorear la temperatura y la humedad en el gabinete.6.2 No deberá haber gotas de agua de condensación en la muestra de prueba en la parte superior o en la pared del gabinete de prueba.6.3 El agua condensada en el gabinete de prueba debe descargarse continuamente y no debe usarse nuevamente a menos que se purifique (repurifique).6.4 Cuando la humedad en el gabinete de prueba se logra rociando agua en el gabinete de prueba, el coeficiente de resistencia a la humedad no debe ser inferior a 500 Ω.7. Otros7.1 Las condiciones de temperatura y humedad en el gabinete de prueba deben ser uniformes y similares a las cercanas al sensor de temperatura y humedad.7.2 Las condiciones de temperatura y humedad en el gabinete de prueba no deben cambiarse durante el encendido o la prueba funcional de la muestra.7.3 Las precauciones que se deben tomar al eliminar la humedad de la superficie de la muestra se detallarán en las especificaciones pertinentes. IEC 68-2-14 Método de prueba N: variación de temperatura1. Propósito de la pruebaEl propósito de este método de prueba es determinar el efecto de la muestra en el ambiente del cambio de temperatura o del cambio continuo de temperatura.Paso 2: AlcanceEste método de prueba se puede dividir en:Método de prueba Na: cambio rápido de temperatura dentro de un tiempo específicoMétodo de prueba Nb: cambio de temperatura con una variabilidad de temperatura especificadaMétodo de prueba Nc: Cambio rápido de temperatura mediante método de doble inmersión en líquido.Los dos primeros artículos se aplican a componentes, equipos u otros productos, y el tercer artículo se aplica a sellos de vidrio-metal y productos similares.Paso 3 LímiteEste método de prueba no valida los efectos ambientales de alta o baja temperatura, y si dichas condiciones deben validarse, "IEC68-2-1 Método de prueba A:" frío "o "IEC 60068-2-2 Método de prueba B: calor seco" debe usarse.4. Procedimiento de prueba4.1 Método de prueba Na:Cambio rápido de temperatura en un tiempo específico.4.1.1 Las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes antes de realizar el ensayo.4.1.2 El tipo de muestra deberá estar desembalado, sin energía y listo para su uso u otras condiciones especificadas en las especificaciones pertinentes. La condición inicial de la muestra fue temperatura ambiente en el laboratorio.4.1.3 Ajuste la temperatura de los dos gabinetes de temperatura respectivamente a las condiciones de temperatura alta y baja especificadas.4.1.4 Coloque la muestra en el gabinete de baja temperatura y manténgala caliente de acuerdo con el tiempo de residencia especificado.4.1.5 Mueva la muestra al gabinete de alta temperatura y manténgala caliente de acuerdo con el tiempo de residencia especificado.4.1.6 El tiempo de transferencia de alta y baja temperatura estará sujeto a las condiciones de prueba.4.1.7 Repita el procedimiento de los Pasos 4.1.4 y 4.1.5 cuatro veces4.1.8 Después de la prueba, la muestra debe colocarse en condiciones atmosféricas estándar y mantenerse durante un tiempo determinado para que alcance la estabilidad de la temperatura. El tiempo de respuesta se referirá a la normativa pertinente.4.1.9 Después del ensayo, las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes.4.2 Método de prueba Nota:Cambio de temperatura con una variabilidad de temperatura específica.4.2.1 Las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes antes del ensayo.4.2.2 Coloque la pieza de prueba en el gabinete de temperatura. La forma de la pieza de prueba debe estar desembalada, desconectada y lista para su uso u otras condiciones especificadas en las especificaciones pertinentes. La condición inicial de la muestra fue temperatura ambiente en el laboratorio.La muestra se puede hacer operativa si así lo exige la especificación pertinente.4.2.3 La temperatura del gabinete se reducirá a la condición de baja temperatura prescrita y el aislamiento se realizará de acuerdo con el tiempo de residencia prescrito.4.2.4 La temperatura del gabinete se elevará a la condición de alta temperatura especificada y la preservación del calor se llevará a cabo de acuerdo con el tiempo de residencia especificado.4.2.5 La variabilidad de la temperatura de alta y baja temperatura estará sujeta a las condiciones de prueba.4.2.6 Repita el procedimiento en los Pasos 4.2.3 y 4.2.4:Durante la prueba se realizarán pruebas eléctricas y mecánicas.Registre el tiempo utilizado para las pruebas eléctricas y mecánicas.Después de la prueba, la muestra debe colocarse en condiciones atmosféricas estándar y mantenerse durante un tiempo determinado para que la muestra alcance el tiempo de recuperación de la estabilidad de la temperatura referido a las especificaciones pertinentes.Después del ensayo, las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes.5. Condiciones de pruebaLas condiciones de prueba se pueden seleccionar mediante las siguientes condiciones de temperatura y tiempo de prueba apropiados o de acuerdo con las especificaciones relevantes,5.1 Método de prueba Na:Cambio rápido de temperatura en un tiempo específico.Alta temperatura: 1000800630500400315250200175155125100,85,70,55,4030°CBaja temperatura :-65,-55,-40,-25.-10.-5 °CHumedad: El contenido de vapor por metro cúbico de aire debe ser inferior a 20 gramos (equivalente al 50% de humedad relativa a 35°C).Tiempo de residencia: El tiempo de ajuste de temperatura del gabinete de temperatura puede ser de 3 horas, 2 horas, 1 hora, 30 minutos o 10 minutos, si no hay previsión se fija en 3 horas. Después de colocar la pieza de prueba en el gabinete de temperatura, el tiempo de ajuste de temperatura no puede exceder una décima parte del tiempo de residencia. Tiempo de transferencia: manual de 2 a 3 minutos, automático de menos de 30 segundos, muestra pequeña de menos de 10 segundos.Número de ciclos: 5 ciclos.Tolerancia de prueba: la tolerancia de temperatura por debajo de 200 ℃ es +2 ℃La tolerancia de temperatura entre 250 y 1000C es +2% de la temperatura de prueba. Si el tamaño del gabinete de temperatura no puede cumplir con los requisitos de tolerancia anteriores, la tolerancia se puede relajar: la tolerancia de la temperatura por debajo de 100 °C es ±3 °C y la tolerancia de la temperatura entre 100 y 200 °C es ±5 ° C (la relajación de la tolerancia debe indicarse en el informe).5.2 Método de prueba Nota:Cambio de temperatura con una variabilidad de temperatura específica.Alta temperatura: 1000800630500400315250200175155125100,85,70 55403 0'CBaja temperatura:-65,-55,-40,-25,-10,-5,5 ℃Humedad: El vapor por metro cúbico de aire debe ser inferior a 20 gramos (equivalente a 50 % de humedad relativa a 35 °C) Tiempo de residencia: incluyendo el tiempo de subida y enfriamiento puede ser de 3 horas, 2 horas, 1 hora, 30 minutos o 10 minutos , si no hay provisión, se fija en 3 horas.Variabilidad de temperatura: la fluctuación de temperatura promedio del gabinete de temperatura en 5 minutos es 1+0,2 °C/min, 3+0,6 °C/min o 5+1 °C/min.Número de ciclos: 2 ciclos.Tolerancia de prueba: La tolerancia de temperatura por debajo de 200 ℃ es +2 ℃.La tolerancia de temperatura entre 250 y 1000 ℃C es +2% de la temperatura de prueba. Si el tamaño del gabinete de temperatura no puede cumplir con los requisitos de tolerancia anteriores, se puede relajar la tolerancia. La tolerancia de la temperatura por debajo de 100 °C es de +3 °C. La temperatura entre 100 °C y 200 °C es de +5 °C. (La relajación de la tolerancia debe indicarse en el informe).6. Configuración de prueba6.1 Método de prueba Na:Cambio rápido de temperatura en un tiempo específico.La diferencia entre la temperatura de la pared interior de los gabinetes de alta y baja temperatura y las especificaciones de la prueba de temperatura no deberá exceder el 3% y el 8% (mostrado en °K) respectivamente para evitar problemas de radiación térmica.La muestra termogénica debe colocarse en el centro del gabinete de prueba en la medida de lo posible, y la distancia entre la muestra y la pared del gabinete, la muestra y la muestra debe ser superior a 10 cm, y la relación del volumen de la temperatura el gabinete y la muestra deben ser mayores que 5:1.6.2 Método de prueba Nota:Cambio de temperatura con una variabilidad de temperatura específica.Las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes antes de realizar el ensayo.La muestra deberá estar desembalada, sin energía y lista para su uso u otras condiciones especificadas en las especificaciones pertinentes. La condición inicial de la muestra fue temperatura ambiente en el laboratorio.Ajuste la temperatura de los dos gabinetes de temperatura respectivamente a las condiciones de temperatura alta y baja especificadas.La muestra se coloca en un gabinete de baja temperatura y se mantiene caliente según el tiempo de residencia especificado.La muestra se coloca en un gabinete de alta temperatura y se aísla según el tiempo de residencia especificado.El tiempo de transferencia de temperatura alta y baja se realizará de acuerdo con las condiciones de prueba.Repita el procedimiento de los pasos d y e cuatro veces.Después de la prueba, la muestra debe colocarse en condiciones atmosféricas estándar y mantenerse durante un tiempo determinado para que la muestra alcance el tiempo de recuperación de la estabilidad de la temperatura referido a las especificaciones pertinentes.Después del ensayo, las muestras se inspeccionarán visual, eléctrica y mecánicamente de acuerdo con las especificaciones pertinentes.6.3 Método de prueba NC:Cambio rápido de temperatura del método de remojo de doble líquidoEl líquido utilizado en la prueba será compatible con la muestra y no dañará la muestra.7. Otros7.1 Método de prueba Na:Cambio rápido de temperatura en un tiempo específico.Cuando la muestra se coloca en el gabinete de temperatura, la temperatura y el caudal de aire en el gabinete deben alcanzar la especificación de temperatura y la tolerancia especificadas dentro de una décima parte del tiempo de retención.El aire en el gabinete debe mantenerse en círculo y el caudal de aire cerca de la muestra no debe ser inferior a 2 metros por segundo (2 m/s).Si la muestra se transfiere desde el gabinete de alta o baja temperatura, el tiempo de retención no se puede completar por algún motivo, permanecerá en el estado de retención anterior (preferiblemente a baja temperatura).7.2 Método de prueba Nota:El aire en el gabinete debe mantenerse en un círculo con una variabilidad de temperatura específica y el caudal de aire cerca de la muestra no debe ser inferior a 2 metros por segundo (2 m/s).7.3 Método de prueba NC:Cambio rápido de temperatura del método de remojo de doble líquidoCuando la muestra se sumerge en el líquido, se puede transferir rápidamente entre los dos recipientes y el líquido no se puede agitar. 
    LEER MÁS
  • ¿Qué son los dispositivos a prueba de explosiones de alta y baja temperatura? ¿Qué son los dispositivos a prueba de explosiones de alta y baja temperatura?
    Sep 26, 2024
    ¿Qué son los dispositivos a prueba de explosiones de alta y baja temperatura?Debido a la particularidad del producto de prueba, durante el proceso de prueba, el producto de prueba puede producir una gran cantidad de gas. en el estado de alta temperatura o alta presión, que puede incendiarse y explotar. Para garantizar la seguridad de la producción, se pueden utilizar dispositivos de protección de seguridad preventiva como equipo opcional. Por lo tanto, el cámara de prueba de alta y baja temperatura Es necesario agregar dispositivos especiales: dispositivos a prueba de explosiones al probar estos productos especiales. Hoy hablemos de cuáles son los dispositivos a prueba de explosiones de alta y baja temperatura.1. Puerto de alivio de presiónCuando el aire generado en la cámara de prueba aumenta y la presión del gas en la cámara alcanza un umbral, el puerto de alivio de presión se abre automáticamente y libera la presión hacia afuera. Este diseño garantiza que cuando el sistema tenga una sobrepresión, la presión pueda liberarse, evitando así que el sistema colapse o explote. La ubicación y la cantidad de puertos de alivio de presión se determinan de acuerdo con los requisitos de aplicación y diseño del sistema de extinción de incendios específicos.2. Detector de humoEl detector de humo realiza principalmente la prevención de incendios monitoreando la concentración de humo. El sensor de humo iónico se utiliza dentro del detector de humo. El sensor de humo iónico es un tipo de sensor con tecnología avanzada y funcionamiento estable y confiable. Cuando la concentración de partículas de humo en la cámara es mayor que el umbral, detectará y emitirá una alarma para recordarle a la producción que detenga la operación y logre el efecto de prevenir incendios.3. Detector de gasesUn detector de gas es un instrumento que detecta la concentración de un gas. El instrumento es adecuado para lugares peligrosos donde existen gases combustibles o tóxicos y puede detectar continuamente el contenido del gas medido en el aire dentro del límite explosivo inferior durante un tiempo prolongado. El gas se difunde hacia el electrodo de trabajo del sensor a través de la parte posterior de la película porosa, donde el gas se oxida o reduce. Esta reacción electroquímica provoca un cambio en la corriente que fluye a través del circuito externo y la concentración de gas se puede medir midiendo el tamaño de la corriente.4. Sistema de escape de humosLa entrada de aire del ventilador presurizado está conectada directamente con el aire exterior. Para evitar que el aire exterior se contamine con humo, la entrada de aire del ventilador de suministro no debe ubicarse al mismo nivel que la salida de aire de la máquina de extracción. Se debe instalar una válvula de aire unidireccional en la tubería de entrada o salida de aire del ventilador. El sistema de extracción de humos mecánico adopta un ventilador de extracción de humos para el aire de extracción mecánico. Según información relevante, un sistema mecánico de extracción de humos bien diseñado puede descargar el 80% del calor del incendio, de modo que la temperatura del lugar del incendio se reduce considerablemente y tiene un papel importante en la seguridad de la evacuación del personal y del incendio. lucha.5. Cerradura electromagnética y hebilla mecánica de puerta.La cerradura electromagnética utiliza el principio electromagnético para lograr la fijación del cuerpo de la cerradura, sin la necesidad de utilizar una lengüeta de bloqueo mecánica, por lo que la cerradura electromagnética no existe la posibilidad de daño de la lengüeta de la cerradura mecánica o destrucción forzada. La cerradura electromagnética tiene una alta resistencia al impacto, cuando la fuerza de impacto externa actúa sobre el cuerpo de la cerradura, el cuerpo de la cerradura no se destruirá fácilmente y habrá ciertas medidas de protección cuando ocurra la explosión.6. Dispositivo automático de extinción de incendios.El dispositivo automático de extinción de incendios se compone principalmente de cuatro partes: detector (detector de energía térmica, detector de llama, detector de humo), extintor de incendios (extintor de dióxido de carbono), alarma de control de temperatura digital y módulo de comunicación. A través del módulo de comunicación digital en el dispositivo, los cambios de temperatura en tiempo real, el estado de la alarma y la información del extintor de incendios en el área del incendio se pueden monitorear y controlar de forma remota, lo que no solo puede monitorear de forma remota los diversos estados del dispositivo automático de extinción de incendios, sino también También domina los cambios en tiempo real en el área del incendio, lo que puede minimizar la pérdida de vidas y propiedades cuando ocurre el incendio.7. Indicador y luz de advertenciaComunique el estado del equipo o el estado de la transmisión mediante señales visuales y acústicas a los operadores de máquinas, técnicos, gerentes de producción y personal de la planta. 
    LEER MÁS
  • ¿Cuáles son los sistemas de protección de seguridad de la cámara de pruebas de alta y baja temperatura? ¿Cuáles son los sistemas de protección de seguridad de la cámara de pruebas de alta y baja temperatura?
    Sep 26, 2024
    ¿Cuáles son los sistemas de protección de seguridad de la cámara de pruebas de alta y baja temperatura?1, protección contra fugas/sobretensiones: protección contra fugas del disyuntor de fuga protección contra sobretensiones electrónica FUSE.RC de Taiwán2, el dispositivo de protección y detección automática interna del controlador(1) Sensor de temperatura/humedad: el controlador controla la temperatura y la humedad en el área de prueba dentro del rango establecido a través del sensor de temperatura y humedad.(2) Alarma de sobretemperatura del controlador: cuando el tubo de calentamiento en la cámara continúa calentándose y excede la temperatura establecida por los parámetros internos del controlador, el zumbador sonará y deberá restablecerse y reutilizarse manualmente.3, interfaz de control de detección de fallas: configuración de protección de detección automática de fallas externas(1) La primera capa de protección contra sobrecalentamiento de alta temperatura: configuración de protección contra sobrecalentamiento de control de operación(2) La segunda capa de protección contra altas temperaturas y sobrecalentamiento: el uso de un protector contra sobrecalentamiento contra la quema en seco para proteger el sistema no se calentará todo el tiempo para quemar el equipo.(3) Protección contra rotura de agua y quema de aire: la humedad está protegida por un protector contra sobretemperatura quema contra la sequedad(4) Protección del compresor: protección de la presión del refrigerante y dispositivo de protección contra sobrecargas4. Protección contra fallas anormales: cuando ocurre la falla, corte la fuente de alimentación de control y la indicación de causa de falla y la señal de salida de alarma.5, advertencia automática de escasez de agua: advertencia activa de escasez de agua de la máquina6, Protección dinámica de alta y baja temperatura: con las condiciones de configuración para ajustar dinámicamente el valor de protección de alta y baja temperatura
    LEER MÁS
  • Comparación de la cámara de prueba de convección natural, la cámara de prueba de temperatura y humedad constantes y el horno de alta temperatura Comparación de la cámara de prueba de convección natural, la cámara de prueba de temperatura y humedad constantes y el horno de alta temperatura
    Sep 24, 2024
    Comparación de la cámara de prueba de convección natural, la cámara de prueba de temperatura y humedad constantes y el horno de alta temperaturaInstrucciones:Los equipos audiovisuales de entretenimiento para el hogar y la electrónica automotriz son uno de los productos clave de muchos fabricantes, y el producto en el proceso de desarrollo debe simular la adaptabilidad del producto a la temperatura y las características electrónicas a diferentes temperaturas. Sin embargo, cuando se utiliza un horno general o una cámara térmica y de humedad para simular la temperatura ambiente, ya sea el horno o la cámara térmica y de humedad tiene un área de prueba equipada con un ventilador de circulación, por lo que habrá problemas con la velocidad del viento en el área de prueba.Durante la prueba, la uniformidad de la temperatura se equilibra haciendo girar el ventilador de circulación. Aunque la uniformidad de la temperatura del área de prueba se puede lograr mediante la circulación del viento, el aire circulante también eliminará el calor del producto a probar, lo que será significativamente inconsistente con el producto real en un entorno de uso sin viento. (como la sala de estar, interior).Debido a la relación de circulación del viento, la diferencia de temperatura del producto a probar será de casi 10 ℃. Para simular el uso real de las condiciones ambientales, muchas personas malinterpretarán que solo la cámara de prueba puede producir temperatura (como: horno, cámara de humedad a temperatura constante) y puede realizar la prueba de convección natural. De hecho, este no es el caso. En la especificación, existen requisitos especiales para la velocidad del viento y se requiere un entorno de prueba sin velocidad del viento. A través del equipo y software de prueba de convección natural, se genera la temperatura ambiente sin pasar por el ventilador (convección natural) y se realiza la prueba de integración de la prueba para la detección de temperatura del producto bajo prueba. Esta solución se puede utilizar para dispositivos electrónicos domésticos o pruebas de temperatura ambiente del mundo real en espacios reducidos (por ejemplo, televisores LCD grandes, cabinas de automóviles, dispositivos electrónicos automotrices, computadoras portátiles, de escritorio, consolas de juegos, equipos de música, etc.).Especificación de la prueba de circulación de aire no forzada: IEC-68-2-2, GB2423.2, GB2423.2-89 3.31 La diferencia entre el entorno de prueba con o sin circulación de viento y la prueba de los productos a probar:Instrucciones:Si el producto a probar no está energizado, el producto a probar no se calentará solo, su fuente de calor solo absorbe el calor del aire en el horno de prueba, y si el producto a probar está energizado y calentado, la circulación del viento en el El horno de prueba eliminará el calor del producto a probar. Cada aumento de 1 metro en la velocidad del viento, su calor se reducirá aproximadamente un 10%. Supongamos que simula las características de temperatura de productos electrónicos en un ambiente interior sin aire acondicionado. Si se utiliza un horno o un humidificador de temperatura constante para simular 35 °C, aunque el ambiente se puede controlar dentro de los 35 °C mediante calefacción eléctrica y compresor, la circulación del viento del horno y la cámara de prueba térmica y de humidificación eliminarán el calor. del producto a ensayar. De modo que la temperatura real del producto a probar sea inferior a la temperatura en el estado real sin viento. Es necesario utilizar una cámara de prueba de convección natural sin velocidad del viento para simular eficazmente el entorno real sin viento (interior, cabina de automóvil sin arranque, chasis de instrumentos, cámara impermeable al aire libre... Dicho entorno).Tabla comparativa de velocidad del viento y producto IC a probar:Descripción: Cuando la velocidad del viento ambiental es más rápida, la temperatura de la superficie del IC también eliminará el calor de la superficie del IC debido al ciclo del viento, lo que hará que la velocidad del viento sea más rápida y la temperatura más baja.    
    LEER MÁS
  • Comparación de prueba climática y prueba ambiental Comparación de prueba climática y prueba ambiental
    Sep 19, 2024
    Comparación de prueba climática y prueba ambientalPrueba de entorno climático: cámara de prueba de temperatura y humedad constantes, cámara de prueba de temperatura alta y baja, cámara de prueba de choque frío y caliente, cámara de prueba de alternancia de calor y humedad, cámara de prueba de cambio rápido de temperatura, cámara de prueba de cambio de temperatura lineal, temperatura constante sin cita previa y cámara de prueba de humedad, etc. Todos ellos implican control de temperatura.Debido a que existen múltiples puntos de control de temperatura para elegir, el método de control de temperatura de la cámara climática también tiene tres soluciones: control de temperatura de entrada, control de temperatura del producto y control de temperatura en "cascada". Los dos primeros son control de temperatura de un solo punto y el tercero es control de temperatura de dos parámetros.El método de control de temperatura de un solo punto ha sido muy maduro y ampliamente utilizado.La mayoría de los primeros métodos de control eran controles de interruptores de "ping-pong", comúnmente conocidos como calefacción cuando hacía frío y refrigeración cuando hacía calor. Este modo de control es un modo de control de retroalimentación. Cuando la temperatura del flujo de aire en circulación es mayor que la temperatura establecida, la válvula electromagnética de refrigeración se abre para entregar un volumen frío al flujo de aire en circulación y reducir la temperatura del flujo de aire. De lo contrario, se activa el interruptor de circuito del dispositivo de calefacción para calentar directamente el flujo de aire circulante. Elevar la temperatura de la corriente de aire. Este modo de control requiere que el dispositivo de refrigeración y los componentes de calefacción de la cámara de prueba estén siempre en un estado de funcionamiento en espera, lo que no sólo desperdicia mucha energía, sino que también el parámetro controlado (temperatura) está siempre en un estado de "oscilación", y la precisión del control no es alta.Ahora, el método de control de temperatura de un solo punto se ha cambiado principalmente al método de control integral diferencial proporcional (PID), que puede proporcionar la corrección de temperatura controlada de acuerdo con el cambio pasado del parámetro controlado (control integral) y la tendencia de cambio (control diferencial). ), lo que no solo ahorra energía, sino que también la amplitud de "oscilación" es pequeña y la precisión del control es alta.El control de temperatura de doble parámetro consiste en recopilar el valor de temperatura de la entrada de aire de la cámara de prueba y el valor de temperatura cerca del producto al mismo tiempo. La entrada de aire de la cámara de prueba está muy cerca de la posición de instalación del evaporador y el calentador en la sala de modulación de aire, y su magnitud refleja directamente el resultado de la modulación de aire. El uso de este valor de temperatura como parámetro de control de retroalimentación tiene la ventaja de modular rápidamente los parámetros de estado del aire en circulación.El valor de temperatura cerca del producto indica las condiciones ambientales de temperatura real que sufre el producto, que es el requisito de la especificación de prueba ambiental. El uso de este valor de temperatura como parámetro del control de retroalimentación puede garantizar la efectividad y credibilidad de la prueba ambiental de temperatura, por lo que este enfoque tiene en cuenta las ventajas de ambos y los requisitos de la prueba real. La estrategia de control de temperatura de doble parámetro puede ser el "control de tiempo compartido" independiente de los dos grupos de datos de temperatura, o los dos valores de temperatura ponderados se pueden combinar en un valor de temperatura como una señal de control de retroalimentación de acuerdo con un cierto coeficiente de ponderación. y el valor del coeficiente de ponderación está relacionado con el tamaño de la cámara de prueba, la velocidad del viento del flujo de aire circulante, el tamaño de la tasa de cambio de temperatura, la producción de calor del trabajo del producto y otros parámetros.Debido a que la transferencia de calor es un proceso físico dinámico complejo y se ve muy afectada por las condiciones ambientales atmosféricas alrededor de la cámara de prueba, el estado de funcionamiento de la propia muestra probada y la complejidad de la estructura, es difícil establecer un modelo matemático perfecto para el control de temperatura y humedad de la cámara de prueba. Para mejorar la estabilidad y precisión del control, se introducen la teoría y el método de control de lógica difusa en el control de algunas cámaras de prueba de temperatura. En el proceso de control, se simula el modo de pensamiento humano y se adopta el control predictivo para controlar el campo espacial de temperatura y humedad más rápidamente.En comparación con la temperatura, la selección de los puntos de control y medición de la humedad es relativamente sencilla. Durante el flujo de circulación del aire húmedo bien regulado hacia la cámara de prueba del ciclo de alta y baja temperatura, el intercambio de moléculas de agua entre el aire húmedo y la pieza de prueba y las cuatro paredes de la cámara de prueba es muy pequeño. Mientras la temperatura del aire en circulación sea estable, el flujo de aire en circulación desde la entrada a la cámara de prueba hasta la salida de la cámara de prueba está en proceso. El contenido de humedad del aire húmedo cambia muy poco. Por lo tanto, el valor de humedad relativa del aire detectado en cualquier punto del campo de flujo de aire circulante en la caja de prueba, como la entrada, la corriente media del campo de flujo o la salida de aire de retorno, es básicamente el mismo. Debido a esto, en muchas cámaras de prueba que utilizan el método de bulbo húmedo y seco para medir la humedad, el sensor de bulbo húmedo y seco se instala en la salida de aire de retorno de la cámara de prueba. Además, debido al diseño estructural de la caja de prueba y la conveniencia del mantenimiento en uso, el sensor de bulbo húmedo y seco utilizado para la medición y control de la humedad relativa se coloca en la entrada de aire de retorno para una fácil instalación y también ayuda a reemplazar regularmente el sensor húmedo. gasa del bulbo y limpie el cabezal sensor de temperatura de la resistencia PT100, y de acuerdo con los requisitos de la prueba de calor húmedo GJB150.9A 6.1.3. La velocidad del viento que pasa a través del sensor de bulbo húmedo no debe ser inferior a 4,6 m/s. El sensor de bulbo húmedo con un pequeño ventilador está instalado en la salida de aire de retorno para facilitar el mantenimiento y el uso.   
    LEER MÁS
  • Aplicación de la cámara de prueba de choque térmico Aplicación de la cámara de prueba de choque térmico
    Sep 19, 2024
    Aplicación de la cámara de prueba de choque térmicoLa cámara de prueba de choque térmico es un equipo de prueba indispensable para aviación, automoción, electrodomésticos, investigación científica y otros campos, que se utiliza para probar y determinar los parámetros y el rendimiento de productos y materiales eléctricos, electrónicos y de otro tipo después de cambios de temperatura ambiente en altas temperaturas, bajas temperatura, humedad alterna y grado de calor o prueba constante; O prueba de calor húmedo constante después de que la temperatura ambiente cambie los parámetros y el rendimiento. Aplicable a escuelas, fábricas, puestos de investigación, etc.1, la cámara de prueba de impacto de alta y baja temperatura con bucle de sistema automático y de alta precisión, cualquier acción de parte, procesamiento de bloqueo completamente PLC, todos usan control de cálculo automático PID, precisión de control de alta temperatura, diseño científico avanzado del ciclo de circulación de aire, hacen que el interior temperatura uniforme, evite los rincones muertos; El dispositivo de protección completo evita posibles peligros ocultos y garantiza la fiabilidad a largo plazo del equipo.2, cámara de prueba de impacto de alta y baja temperatura adopta un dispositivo de medición avanzado y el controlador adopta un controlador de interfaz hombre-máquina LCD de diálogo táctil hombre-máquina LCD de color grande, que es fácil de operar, fácil de aprender, estable y confiable, y muestra el estado completo de operación, ejecución y configuración del sistema. curva del programa en chino e inglés. Con 96 especificaciones de prueba configuradas de forma independiente, tiempo de impacto de 999 horas 59 minutos, se puede configurar el ciclo de 1 a 999 veces, puede realizar el funcionamiento automático del refrigerador, en gran medida para lograr la automatización, reducir la carga de trabajo del operador, puede automáticamente comenzar y dejar de funcionar en cualquier momento.3. El lado izquierdo de la cámara tiene un orificio de prueba con un diámetro de 50 mm, que se puede utilizar para cablear piezas de prueba con carga de alimentación externa. Se pueden configurar de forma independiente temperatura alta, baja temperatura y choque térmico y frío en tres condiciones diferentes de la función, y en la implementación de condiciones de choque térmico y frío, puede elegir dos o tres canales y lavado en frío, función de impacto de lavado en caliente, con alta y función de la máquina de prueba de baja temperatura.
    LEER MÁS
  • Proyecto de prueba del módulo solar Proyecto de prueba del módulo solar
    Sep 18, 2024
    Proyecto de prueba del módulo solar1. Especificación de la prueba de confiabilidad del módulo solar:La prueba de confiabilidad del módulo solar es para confirmar el rendimiento del módulo solar (temprano), y las especificaciones de prueba para el módulo son principalmente tres especificaciones de prueba IEC61215, IEC61646, UL1703. IEC61215 es adecuado para módulos cristalinos (Si); IEC61646 es adecuado para módulos de película delgada (Thin-flm); El UL1703 es adecuado para módulos solares tanto cristalinos como de película delgada. Además, las especificaciones de energía solar GB y CNS se modifican parcialmente con respecto a la IEC.2. La relación e importancia de la Macro Exposición y los proyectos de prueba de energía solar:Según IEC61215, elementos de prueba IEC61646 un total de aproximadamente 10 (elementos de prueba de módulo solar correspondientes a la tabla general). Entre ellos, se utilizará el equipo de prueba fabricado por Hongjian y las condiciones de prueba relevantes son los ciclos de temperatura (ciclos térmicos, 10.11). Hay tres categorías de congelación por humedad (10.12) y calor húmedo (10.13), mientras que UL1703 solo tiene dos elementos de congelación húmeda del ciclo de temperatura sin el elemento de calor húmedo.3. Prueba de ciclado térmico (Ciclo térmico) IEC61215-10-11:La prueba del ciclo de temperatura del módulo solar se utiliza para determinar la fatiga, falla térmica u otra falla por estrés causada por cambios repetidos en la temperatura del módulo. El número actual de ciclos de temperatura es 200 veces, y la tendencia futura será 600 veces (según los resultados de las pruebas de la Asociación Estadounidense de Energía Renovable [NREL], la tasa de degradación de energía de 600 veces es mayor que 200 veces más que dos veces).A través del ciclo de temperatura: se pueden encontrar defectos del módulo: crecimiento de grietas, grietas del módulo, deformaciones, delaminación del material de sellado, desprendimiento de puntos, corrosión del vidrio... Esperemos.Condiciones de temperatura: Baja temperatura: -40 ℃, alta temperatura: 85 °C (IEC), 90 °C (UL), la variabilidad de temperatura más rápida (promedio): 100 °C /h, 120 °C /h, se necesitan mediciones relevantes que se realizará durante la prueba (utilizando el sistema de medición de energía solar de Qingsheng), el proceso de prueba debe medir el módulo: temperatura de la superficie del módulo, voltaje y corriente, continuidad de tierra, aislamiento... Esperemos.4. el propósito del proceso de prueba del ciclo de temperatura mediante sesgo:Proceso de prueba del ciclo de temperatura, la especificación requiere polarización, el propósito de la prueba es hacer que la celda defectuosa se caliente para acelerar el envejecimiento y acelerar los propósitos de la prueba de falla, por lo que debe energizarse por encima de 25 ℃ durante el proceso del ciclo de temperatura, el laboratorio en Estados Unidos tiene estadísticas. Se encontró que la diferencia entre la tasa de falla del módulo solar con y sin energía es tan alta como el 30%, y los datos experimentales indican que si no hay energía, el módulo solar no es fácil. fallar en el entorno del ciclo de temperatura, por lo que al realizar la prueba del ciclo de temperatura de la célula solar (Cel) y el módulo, es necesario combinarlo con un sistema de medición especial.5. la introducción de la prueba de congelación húmeda lEC61215-10-12:Descripción: Para determinar si el componente es suficientemente resistente al daño por corrosión y la capacidad de la expansión de la humedad para expandir las moléculas del material, la humedad congelada es la tensión para determinar la causa de la falla. Para el producto que se va a probar, la tensión de prueba es de alta temperatura y alta humedad (85 ℃/85 % R.H) a baja temperatura (-40 ℃ humedad 85 % R.H). Mantener a 25 ℃), y la temperatura baja aumenta a temperatura alta y humedad alta, en lugar de 85 ℃/85 % H.R./20 horas, 85 ℃/85 % H.R./20 horas, el propósito de 85 ℃/85 % H.R./20 horas es dejar que el módulo se llene de agua, 20 horas de permanencia es demasiado corto, no es suficiente para que el agua penetre en el módulo y en la caja de conexiones del interior.Mediante prueba de congelación húmeda: Se pueden encontrar defectos en el módulo: grietas, deformaciones, corrosión severa, laminación de materiales de sellado, falla de la caja de conexiones de delaminación adhesiva y acumulación de agua, aislamiento húmedo **... Etc.Condiciones de prueba: 85 ℃ / 85% H.R. (h) 20-40 ℃ (0,5 ~ 4 h), calentamiento máximo 100, 120 ℃/h y temperatura máxima de 200 °C/h.6. Propósito de la prueba de congelación húmeda:El método de prueba de congelación húmeda consiste principalmente en realizar dos tipos de daños al módulo solar en un ambiente nevado.(1). Las altas temperaturas y la humedad (85 ℃/85 % RH) caen a -4 ℃ antes de 25 ℃, la humedad debe controlarse a 85 % + 5 % RH. El propósito de esto es simular el cambio repentino de alta humedad antes de la nieve.Antes de la nieve, el ambiente mostrará un estado de alta humedad y cuando la temperatura baje a 0 ℃, el gas de agua alrededor del módulo y el sellador de la caja de conexiones se congelarán. Cuando el gas de agua se congela, su volumen se expandirá a 1,1 veces el original, y se utiliza el método de destrucción de expansión del hielo después de que el gas de agua penetra la brecha de material a través del gas de agua para lograr el propósito de esta prueba. En la actualidad, los resultados estadísticos de la congelación húmeda tienen el mayor daño al sellador de la caja de conexiones, lo que provocará el desgomado y el agua de la caja de conexiones, y la tasa de falla del módulo se estima en un 7%.(2). El propósito de calentar desde una temperatura baja (-40 ℃) y humedad (50 ℃/85 % H.R.) es simular el aumento de temperatura en el módulo al amanecer en un clima nevado. Aunque el ambiente exterior todavía está por debajo de 0 ℃, el módulo solar generará electricidad cuando haya luz y, debido a que todavía hay nieve sobre el módulo, se producirá el efecto de punto de calor en el módulo. La temperatura en el interior del módulo también alcanzará los 50°C.7. Prueba de calor húmedo (calor húmedo) IEC61215-10-13:Descripción: Para determinar la capacidad del módulo para resistir la penetración de humedad a largo plazo, según los resultados de las pruebas de BP Solar, sus 1000 horas no son suficientes. La condición real es que el tiempo necesario para que el módulo tenga problemas necesita al menos 1250 horas. De acuerdo con los requisitos actuales de la especificación, el proceso de prueba de calor húmedo no está encendido, pero la tendencia futura es que también esté encendido (sesgo positivo e inverso), porque puede acelerar el envejecimiento y la falla de las células solares.Condiciones de prueba: 85 ℃/85 % H.R., tiempo: 1000 horas Se pueden encontrar defectos mediante la prueba húmeda y térmica: delaminación de CÉLULAS EVA (delaminación, decoloración, formación de burbujas, atomización, pardeamiento), ennegrecimiento de la línea de conexión, corrosión por TCO, corrosión puntual , Decoloración amarilla de película delgada, desgomado de la caja de conexiones  
    LEER MÁS
  • Principio de funcionamiento de la cámara de prueba de intemperismo UV Principio de funcionamiento de la cámara de prueba de intemperismo UV
    Sep 18, 2024
    Principio de funcionamiento de la cámara de prueba de intemperismo UVLa cámara de prueba de intemperismo ultravioleta es un tipo de equipo experimental que se utiliza especialmente para probar la durabilidad y estabilidad de materiales y productos bajo radiación ultravioleta. Su principio de funcionamiento gira en torno a imitar las condiciones de radiación ultravioleta en el entorno natural para evaluar cómo se comportan los materiales cuando se exponen a la luz solar durante largos períodos de tiempo. La cámara está equipada con una serie de fuentes de luz ultravioleta de alta intensidad que emiten eficazmente luz ultravioleta en un rango de longitud de onda específico, imitando las bandas UV-A y UV-B de la luz solar natural.Durante la prueba, la muestra se coloca en la cámara de prueba y la radiación ultravioleta provocará cambios en la estructura química de la superficie del material, como pérdida de color, reducción de la resistencia y aumento de la fragilidad. Al mismo tiempo, la cámara de prueba también se puede combinar con factores ambientales como temperatura y humedad para una evaluación más completa de la muestra. Por ejemplo, el sistema de control de humedad en el laboratorio puede simular los efectos de la lluvia y la humedad, mientras que el equipo de control de temperatura puede reproducir condiciones extremas de calor o frío.Al exponer las muestras a múltiples rondas de radiación ultravioleta en diferentes períodos de tiempo, los investigadores pudieron recopilar una gran cantidad de datos experimentales y analizar en profundidad la resistencia al envejecimiento y la vida útil de las muestras. Estos datos desempeñan un papel vital en el desarrollo de materiales, el control de calidad del producto y el análisis de la demanda del mercado. Además, el uso de cámaras de prueba de intemperismo UV también ayuda a las empresas a anticipar posibles problemas de rendimiento antes del lanzamiento de nuevos productos, para poder realizar ajustes y mejoras oportunas.Estas pruebas no sólo son aplicables a plásticos, revestimientos, fibras y otros materiales, sino que también se utilizan ampliamente en diversas industrias, como la de automóviles, la construcción e incluso productos electrónicos. Al estudiar el rendimiento de los productos en diferentes condiciones climáticas, las empresas pueden mejorar la competitividad de sus productos en el mercado, pero también contribuir a la causa medioambiental, porque los productos con buena resistencia a la intemperie suelen significar un ciclo de vida más largo y menos desperdicio de material.En resumen, las cámaras de prueba de intemperismo UV desempeñan un papel clave en la ciencia de los materiales y el desarrollo de productos, ya que no solo permiten a los desarrolladores comprender mejor las propiedades de los materiales, sino también a los consumidores ofrecer productos de mayor calidad y más duraderos. En el futuro desarrollo de la ciencia y la tecnología, con el progreso continuo de la tecnología de prueba de intemperismo ultravioleta, es posible que podamos presenciar el nacimiento de más materiales y productos nuevos, agregando más comodidad y belleza a nuestras vidas.
    LEER MÁS
  • Definición y características de la cámara de prueba de intemperismo UV Definición y características de la cámara de prueba de intemperismo UV
    Sep 07, 2024
    Definición y características de la cámara de prueba de intemperismo UV La cámara de prueba de intemperismo ultravioleta es un equipo profesional que se utiliza para simular y evaluar la resistencia de los materiales a la radiación ultravioleta y las condiciones climáticas correspondientes. Su función principal es simular el efecto de la luz ultravioleta sobre los materiales en el entorno natural mediante radiación ultravioleta controlada artificialmente y cambios de temperatura y humedad, a fin de realizar pruebas exhaustivas y sistemáticas sobre la durabilidad, la estabilidad del color y las propiedades físicas de los materiales. En los últimos años, con el desarrollo de la ciencia y la tecnología y la mejora continua de los requisitos de rendimiento de los materiales, la aplicación de las cámaras de prueba de intemperismo UV se ha vuelto cada vez más extensa y abarca plásticos, revestimientos, caucho, textiles y otros campos. Las características del equipo se reflejan principalmente en su alta eficiencia y precisión. En primer lugar, la cámara de prueba de intemperismo UV utiliza una lámpara ultravioleta de alta intensidad, que emite un espectro ultravioleta cercano a la luz solar, que puede simular con precisión las condiciones de iluminación en el entorno real. En segundo lugar, cuenta con un sistema de monitoreo y control en tiempo real, que puede regular con precisión la temperatura interna, la humedad y la intensidad de los rayos UV para garantizar la estabilidad del proceso de prueba y la confiabilidad de los resultados. Además, también es particularmente importante el material interno y el diseño estructural de la cámara de prueba, que generalmente utiliza materiales resistentes a la corrosión y a la oxidación para extender la vida útil del equipo y mejorar la precisión de la prueba. Además, la aplicación de la cámara de prueba de intemperismo UV no solo se limita a la detección del envejecimiento de materiales, sino que también puede predecir y mejorar el rendimiento de los materiales, lo que hace que los fabricantes sean más progresistas y científicos en la selección de materiales y el diseño de productos. El uso de este equipo reduce en gran medida los problemas de calidad causados por la falta de resistencia a la intemperie del producto y mejora la competitividad del producto en el mercado. Por lo tanto, en la investigación y el desarrollo de materiales, la cámara de prueba de intemperismo UV puede describirse como una herramienta auxiliar indispensable, que ayuda a las empresas a detectar y optimizar rápidamente las propiedades de los materiales para satisfacer las necesidades cambiantes del mercado. En resumen, la cámara de prueba de intemperismo UV, como tecnología de prueba avanzada, está liderando el progreso y la innovación en el campo de la ciencia de materiales. Con la creciente demanda de materiales respetuosos con el medio ambiente y productos duraderos, la importancia de dichos equipos será cada vez más destacada. Su carácter científico, confiable y eficiente ayudará a todos los ámbitos de la vida a desarrollar más productos de alta calidad para hacer frente a más desafíos desconocidos en el futuro.
    LEER MÁS
  • Estándar de prueba de alta y baja temperatura de material plástico PC Estándar de prueba de alta y baja temperatura de material plástico PC
    Sep 04, 2024
    Estándar de prueba de alta y baja temperatura de material plástico PC1. Prueba de alta temperatura Después de colocarse a 80 ± 2 ℃ durante 4 horas y a temperatura normal durante 2 horas, las dimensiones, la resistencia de aislamiento, la resistencia de voltaje, la función clave y la resistencia del bucle cumplen con los requisitos normales y no hay fenómenos anormales como deformación o deformación. , y de aspecto desgomado. El punto convexo clave colapsa a alta temperatura y la fuerza de presión se vuelve menor sin evaluación.2. Prueba de baja temperaturaDespués de colocarse a -30 ± 2 ℃ durante 4 horas y a temperatura normal durante 2 horas, las dimensiones, la resistencia de aislamiento, la resistencia de voltaje, la función clave y la resistencia del bucle cumplen con los requisitos normales y no hay fenómenos anormales como deformación o deformación. , y de aspecto desgomado.3. Prueba del ciclo de temperaturaPoner en un ambiente de 70 ± 2 ℃ durante 30 minutos, sacar a temperatura ambiente durante 5 minutos; Dejar en ambiente de -20±2℃ durante 30 minutos, retirar y dejar a temperatura ambiente durante 5 minutos. Después de esos 5 ciclos, las dimensiones, la resistencia de aislamiento, la resistencia de voltaje, la función clave y la resistencia del circuito cumplen con los requisitos normales y no aparecen deformaciones, deformaciones, desgomados ni otros fenómenos anormales. El punto convexo clave colapsa a alta temperatura y la fuerza de presión se vuelve menor sin evaluación.4. Resistencia al calorDespués de ser colocado en un ambiente con una temperatura de 40 ± 2 ℃ y una humedad relativa de 93 ± 2 % rh durante 48 horas, las dimensiones, resistencia de aislamiento, resistencia de voltaje, función clave y resistencia de bucle cumplen con los requisitos normales y la apariencia no está deformado, deformado ni desgomado. El punto convexo clave colapsa a alta temperatura y la fuerza de presión se vuelve menor sin evaluación.Valor estándar nacional para pruebas de plástico:Gb1033-86 Método de prueba de densidad plástica y densidad relativaGbl636-79 Método de prueba para la densidad aparente de plásticos moldeados.GB/T7155.1-87 Parte de determinación de densidad de tuberías y accesorios de tuberías termoplásticas: determinación de densidad de referencia de tuberías y accesorios de tuberías de polietilenoGB/ T7155.2-87 Tuberías y accesorios termoplásticos - Determinación de la densidad - Parte L: Determinación de la densidad de tuberías y accesorios de polipropilenoGB/T1039-92 Reglas generales para probar las propiedades mecánicas de los plásticos.GB/ T14234-93 Rugosidad superficial de piezas de plásticoMétodo de prueba de brillo de espejo de plástico Gb8807-88Método de prueba para las propiedades de tracción de la película plástica GBL3022-9L.GB/ TL040-92 Método de ensayo para propiedades de tracción de plásticosMétodo de prueba para las propiedades de tracción de tuberías termoplásticas GB/T8804.1-88, tuberías de cloruro de poliviniloGB/ T8804.2-88 Métodos de prueba para propiedades de tracción de tuberías termoplásticas Tuberías de polietilenoMétodo de prueba de alargamiento de baja temperatura de plástico Hg2-163-65GB/ T5471-85 Método para preparar muestras de moldeo termoendureciblesMétodo de preparación de muestras termoplásticas HG/ T2-1122-77Preparación de muestras de compresión termoplástica GB/ T9352-88www.horno.cclabcompanion.cn Compañero de laboratorio Chinalabcompanion.com.cn Compañero de laboratorio Chinalab-companion.com Compañero de laboratorio labcompanion.com.hk Lab Companion Hong Konglabcompanion.hk Compañero de laboratorio Hong Konglabcompanion.de Lab Companion Alemania labcompanion.it Lab Companion Italia labcompanion.es Lab Companion España labcompanion.com.mx Lab Companion México labcompanion.uk Lab Companion Reino Unidolabcompanion.ru Lab Companion Rusia labcompanion.jp Lab Companion Japón labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francialabcompanion.kr Lab Companion Corea
    LEER MÁS
  • Especificación de prueba de farola LED Especificación de prueba de farola LED
    Sep 04, 2024
    Especificación de prueba de farola LED Las farolas LED son actualmente uno de los métodos de implementación clave para ahorrar energía y reducir las emisiones de carbono, todos los países del mundo han estado en pleno apogeo para reemplazar las farolas tradicionales originales con farolas LED, y la nueva calle se limita directamente al uso. de alumbrado público LED para ahorrar energía. En la actualidad, el tamaño del mercado mundial de farolas LED es de aproximadamente 80 millones, y la fuente de luz de las lámparas LED, ya sea calor, vida útil, espectro de salida, iluminancia de salida y características del material, son diferentes de las lámparas de mercurio tradicionales o de las lámparas de sodio de alta presión. Las condiciones de prueba y los métodos de prueba de las farolas LED son diferentes a los de las lámparas tradicionales. Lab Companion recopiló los métodos de prueba de confiabilidad relacionados con las farolas LED en la actualidad y le brinda referencias para ayudarlo a comprender las pruebas relacionadas con LED.Abreviatura de especificación de prueba de farola LED:Especificación estándar de prueba de farola LED, especificación técnica del método de prueba de farola LED, estándar y método de prueba de farola LED, especificación técnica del producto de componentes de dispositivos de iluminación semiconductores de ingeniería de paisaje nocturno, especificación técnica de aceptación de calidad de construcción de ingeniería de paisaje nocturno de iluminación semiconductor, seguridad de fuente de alimentación IEC 61347LED regulaciónCondiciones de especificación de prueba de farola LED:CJJ45-2006 Estándar de diseño de iluminación vial urbana, estándar de seguridad de lámparas UL1598, estándar de seguridad de alambres y cables UL48, estándar de seguridad de diodos emisores de luz UL8750, prueba de durabilidad de lámparas grandes de diodos emisores de luz CNS13089 - prueba de precombustión - exterior, prueba de impermeabilidad: IP65 , Norma americana para lámparas LED, EN 60598-1, EN 60598-2 Prueba de farolasProyecto de prueba de certificación de calidad de lámpara LED grande:Ciclo de temperatura, ciclo de temperatura y humedad, preservación de alta temperatura, resistencia a la humedad, vibración, choque, potencia continua, pulverización de agua salada, aceleración, resistencia al calor de soldadura, adhesión de soldadura, resistencia del terminal, caída natural, prueba de polvoCondiciones de prueba de certificación de calidad de lámparas LED grandes:Ciclo de temperatura: 125 ℃ (30 min) ← R.T. (5 min) → -65 ℃ (30 min)/5 ciclosDeterminación de fallas de farolas LED (pantalla exterior de diodos emisores de luz con luces grandes):a. La luz del eje es inferior a la clasificación residual del 50 %.b. La tensión directa es superior al 20 % del valor nominal.do. Corriente inversa superior al 100% del valor nominald. La longitud de onda de media altura y la mitad del ángulo de potencia de la luz exceden el valor máximo limitado o el valor mínimo limitado cumple las condiciones anteriores y determina la falla de la farola LED.Nota: Se recomienda que la eficiencia luminosa de la farola LED sea de al menos 45 lm/W o superior (la eficiencia luminosa de la fuente de luz LED debe ser de aproximadamente 70 ~ 80 lm/W).Almacenamiento a alta temperatura: temperatura máxima de almacenamiento 1000 horas [nivel especial 3000 horas]Resistencia a la humedad: 60 ℃/90% H.R./1000 horas [nivel característico 2000 horas]/aplicando polarizaciónPulverización de salmuera: 35 ℃/concentración 5%/18 horas [nivel especial 24 horas]Potencia continua: corriente directa máxima 1000 horasCaída natural: altura de caída 75 cm/tiempos de caída 3 veces/material de caída madera de arce lisaPrueba de polvo: 360 horas continuas de prueba de temperatura del anillo a 50 ℃Vibración: 100 ~ 2000 Hz, 196 m/s^2, 48 horasImpacto: Grado F [Aceleración 14700 m/s^2, amplitud de pulso 0,5 ms, seis direcciones, tres veces en cada dirección]Aceleración igual: la aceleración se aplica en todas las direcciones (clase D: 196000 m/s^2) durante 1 minutoResistencia al calor de soldadura: 260 ℃/10 segundos/1 vezAdhesión de soldadura: 250 ℃/5 segundosFuerza terminalProyecto de prueba de calidad de lotes de lámparas grandes LED:Resistencia del terminal, resistencia al calor de soldadura, ciclo de temperatura, resistencia a la humedad, energía continua, almacenamiento a alta temperaturaCondiciones de prueba de calidad de lotes de lámparas LED grandes:Resistencia a la humedad: 60 ℃/90 % H.R./168 horas (sin falla)/500 horas (se permite una falla) [prueba número 10 / aplicar sesgo]Encendido continuo: corriente directa máxima/168 horas (sin falla)/500 horas (se permite una falla) [prueba número 10]Almacenamiento a alta temperatura: temperatura máxima de almacenamiento/168 horas (sin falla) 500 horas (se permite una falla) [prueba número 10]Resistencia al calor de soldadura: 260 ℃/10 segundos/1 vezAdhesión de soldadura: 250 ℃/5 segundosProyecto de prueba de calidad regular de lámpara grande LED:Vibración, golpes, aceleración, resistencia a la humedad, potencia continua, conservación de altas temperaturas.Condiciones de prueba de calidad periódicas para luces LED grandes:Resistencia a la humedad: 60 ℃/90% H.R./1000 horasPotencia continua: corriente directa máxima/1000 horasAlmacenamiento a alta temperatura: Temperatura máxima de almacenamiento/1000 horasVibración: 100 ~ 2000 Hz, 196 m/s^2, 48 horasImpacto: Grado F [Aceleración 14700 m/s^2, amplitud de pulso 0,5 ms, seis direcciones, tres veces en cada dirección]Aceleración igual: la aceleración se aplica en todas las direcciones (clase D: 196000 m/s^2) durante 1 minutoProyecto de prueba de detección de lámparas LED grandes:Prueba de aceleración, ciclo de temperatura, conservación a alta temperatura, prueba de precombustiónCondiciones de prueba de detección de luz LED grande:Prueba de aceleración constante: aplique aceleración (grado D: 196000 m/s^2) en cada dirección durante 1 minutoCiclo de temperatura: 85 ℃ (30 min) ← R.T. (5 min) → -40 ℃ (30 min)/5 ciclosPrueba previa al encendido: temperatura (temperatura nominal máxima)/corriente (corriente directa nominal máxima) 96 horasAlmacenamiento a alta temperatura: 85 ℃/72 ~ 1000 horasPrueba de vida útil de la lámpara LED:Más de 1000 horas de Life Test (Life Test), atenuación de luz < 3% [luz marchita]Más de 15.000 horas de Life Test (Life Test), atenuación de luz < 8% 
    LEER MÁS
  • Especificación de prueba de la pantalla LCD Especificación de prueba de la pantalla LCD
    Sep 03, 2024
    Especificación de prueba de la pantalla LCD La pantalla LCD, nombre completo de Liquid Crystal Display, es una tecnología de pantalla plana. Utiliza principalmente materiales de cristal líquido para controlar la transmisión y el bloqueo de la luz, a fin de lograr la visualización de imágenes. La estructura de la pantalla LCD generalmente incluye dos sustratos de vidrio paralelos, con una caja de cristal líquido en el medio, y la luz polarizada de cada píxel está controlada por la dirección de rotación de las moléculas de cristal líquido a través del voltaje, para lograr el propósito de imágenes. Las pantallas LCD se utilizan ampliamente en televisores, monitores de computadora, teléfonos móviles, tabletas y otros dispositivos. En la actualidad, los dispositivos de visualización de cristal líquido comunes son Twisted Nematic (TN), Super Twisted Nematic (Super Twisted Nematic), STN), DSTN (Double Layer TN) y transistores de película delgada en color (TFT). Los primeros tres tipos de principios básicos de fabricación son los mismos: se convierten en cristal líquido de matriz pasiva y TFT es más complejo debido a la retención de memoria y se denomina cristal líquido de matriz activa. Debido a que la pantalla de cristal líquido tiene las ventajas de espacio pequeño, espesor de panel delgado, peso ligero, pantalla plana en ángulo recto, bajo consumo de energía, sin radiación electromagnética, sin radiación térmica, reemplaza gradualmente al monitor de tubo de imagen CRT tradicional.Las pantallas LCD tienen básicamente cuatro modos de visualización: reflexión, conversión de transmisión de reflexión, proyección y transmisión.(1) La pantalla de cristal líquido de tipo reflectante en sí no emite luz, a través de la fuente de luz en el espacio hacia el panel LCD, y luego mediante su placa reflectante reflejará la luz a los ojos de las personas;(2) El tipo de conversión de transmisión por reflexión se puede utilizar como tipo de reflexión cuando la fuente de luz en el espacio es suficiente, y la fuente de luz en el espacio se puede utilizar como iluminación cuando la luz no es suficiente;(3) El tipo de proyección utiliza el principio de reproducción de películas similar, el uso del departamento de luz proyectada para proyectar la imagen mostrada por la pantalla de cristal líquido a la pantalla remota más grande;(4) La pantalla de cristal líquido de tipo transmisión utiliza completamente la fuente de luz oculta como iluminación.Condiciones de prueba relevantes: ArtículoTemperaturaTiempoOtroAlmacenamiento a alta temperatura60 ℃, 30% HR120 horasNota 1 Almacenamiento a baja temperatura-20℃120 horasNota 1 Alta temperatura y alta humedad.40 ℃, 95% HR (no invasivo)120 horasNota 1Operación a alta temperatura40 ℃, 30 % HR.120 horasvoltaje estándarChoque de temperatura-20℃(30min)↓25℃(10min)↓20℃(30mín.)↓25℃(10min)10 ciclosNota 1Vibración mecánica——Frecuencia: 5-500 Hz, aceleración: 1,0 g, amplitud: 1,0 mm, duración: 15 minutos, dos veces en dirección X,Y,Z.ArtículoTemperaturaTiempoOtroNota 1: El módulo probado debe colocarse a temperatura normal (15 ~ 35 ℃, 45 ~ 65 % HR) durante una hora antes de realizar la prueba.  
    LEER MÁS
1 2 8 9 10 11 12 13 14 15 16 17
Un total de 17paginas

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos