bandera
Hogar

Blog

Blog

  • Customized Solution for Double-Door Temperature Test Equipment
    Oct 25, 2025
    1.Core customization requirement analysis 1.1 The standard box size or load-bearing capacity (such as automotive parts, large unmanned aerial vehicles, and entire cabinet servers) cannot meet the requirements. Special sample racks, trays or suspension devices are required. The test samples need to be powered on and run inside the box, and connected to cables or pipes (such as battery pack charge and discharge tests, engine component tests). Oil stains, particulate matter or corrosive gases may be released during the sample testing process. 1.2 It needs to be connected with mechanical arms and AGV carts to achieve automatic loading and unloading. The heating and cooling rates required far exceed the standard specifications (such as >15°C/min). 1.3 The equipment needs to adapt to specific room sizes, door opening sizes or floor heights. There are special requirements for the power supply (if it cannot meet 380V) and the cooling water source (if a cooling tower cannot be provided).   2. Key customized technical specifications 2.1 Customized Dimensions The internal effective space is determined entirely based on the size and quantity of the customer's samples. The minimum distance between the sample and the box wall needs to be considered to ensure uniform airflow. It is necessary to clearly define the size of the door, the material of the sealing strip, the door lock mechanism (mechanical lock, pneumatic auxiliary lock), and the size and quantity of the observation window. The inner box is usually made of SUS304 stainless steel. The outer box body can be made of high-quality steel plate with plastic spraying or SUS304. For corrosive tests, more durable materials should be specified. Test holes are used for leads. The size, quantity and position of the hole diameters (such as left or right) need to be customized, and sealing plugs or flanges should be provided. 2.2 Confirm the test interval The technical index standards for temperature are usually from -70°C to +150°C. The standard heating and cooling rate is 1 to 3°C/min. Linear rapid temperature change: 5 to 10°C/min. Nonlinear rapid temperature change: Customizable to 15°C/min or even higher. This is directly related to the power configuration of the refrigeration and heating systems and is a key factor influencing the cost. Customize stricter control accuracy, such as uniformity ≤±1.0°C and fluctuation ≤±0.5°C. 2.3 Refrigeration System Air cooling: Suitable for sites where the ambient temperature is not high and the ventilation around the equipment is good. Water cooling: It is suitable for large cooling capacity, high heat generation samples, or situations with high ambient temperatures. It is more efficient but requires a cooling tower. Cascade refrigeration: It is used for low-temperature requirements below -40°C and usually adopts two-stage cascade. 2.4 Installation Method The refrigeration system of the integrated machine is located at the top or bottom of the box, with a compact structure and convenient installation. The split-type refrigeration unit is separated from the box body and is suitable for high-power equipment. It can discharge noise and heat to the outside, but the installation is complex. 2.5 Control System and Software The controller customizes the size and brand of the color touch screen, supports multi-segment programming, program group loops, step jumps, etc. Customized LAN interface for connecting to the upper computer (computer) for data monitoring and recording. Whether it is necessary to support remote network monitoring and operation, as well as customize record intervals and storage capacity. 2.6 Independent sample over-temperature protector. Compressor overheat, overcurrent and overpressure protection; Fan overcurrent protection Cooling water cut-off protection and automatic stop test function when the door is opened; Leakage or short-circuit protection; Sound and light alarm prompt.   Customizing double-door temperature test equipment is a systematic project. The key to success lies in the clarification and refinement of the initial requirements. A detailed and unambiguous "Technical Requirements Document" serves as the cornerstone for communication between equipment suppliers and customers. It ensures that the final delivered equipment fully complies with testing, process, and site requirements, avoiding subsequent disputes and cost overruns.
    LEER MÁS
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    LEER MÁS
  • The Applicability of Temperature Test Chambers to the Testing of Household Environmental Products
    Oct 18, 2025
    A variety of products used in home environments (more common test objects) such as televisions, air conditioners, refrigerators, washing machines, smart speakers, routers, etc., as well as environmental protection products used to improve the home environment: such as air purifiers, fresh air systems, water purifiers, humidifiers/dehumidifiers, etc. No matter which category it is, as long as it needs to work stably for a long time in a home environment, it must undergo strict environmental reliability tests. The high and low temperature test chamber is precisely the core equipment for accomplishing this task.   The home environment is not always warm and pleasant, and products will face various harsh challenges in actual use. This mainly includes regional climate differences, ranging from the severe cold in Northeast China (below -30°C) to the scorching heat in Hainan (up to over 60°C in the car or on the balcony). High-temperature scenarios such as kitchens close to stoves, balconies exposed to direct sunlight, and stuffy attics, etc. Or low-temperature scenarios: warehouses/balconies without heating in northern winters, or near the freezer of refrigerators. The high and low temperature test chamber, by simulating these conditions, "accelerates" the aging of products in the laboratory and exposes problems in advance.   The actual test cases mainly cover the following aspects: 1. The smart TV was continuously operated at a high temperature of 55°C for 8 hours to test its heat dissipation design and prevent screen flickering and system freezing caused by overheating of the mainboard. 2. For products with lithium batteries (such as cordless vacuum cleaners and power tools), conduct charge and discharge cycles at -10°C to assess the battery performance and safety at low temperatures and prevent over-discharge or fire risks. 3. The air purifier (with both types of "environmental product" attributes) undergoes dozens of temperature cycles between -20°C and 45°C to ensure that its plastic air ducts, motor fixing frames and other structures will not crack or produce abnormal noises due to repeated thermal expansion and contraction. 4. Smart door lock: High-temperature and high-humidity test (such as 40°C, 93%RH) to prevent internal circuits from getting damp and short-circuited, which could lead to fingerprint recognition failure or the motor being unable to drive the lock tongue.   High and low temperature test chambers are not only applicable but also indispensable for the testing of household environmental products. By precisely controlling temperature conditions, it can ensure user safety and prevent the risk of fire or electric shock caused by overheating or short circuits. Ensure that the product can work stably in different climates and home environments to reduce after-sales malfunctions. And it can predict the service life of the product through accelerated testing. Therefore, both traditional home appliance giants and emerging smart home companies will take high and low temperature testing as a standard step in their product development and quality control processes.
    LEER MÁS
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    LEER MÁS
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    LEER MÁS
  • Cascade Compression Refrigeration Working Principle
    Oct 15, 2025
    Cascade compression refrigeration mainly consists of two independent refrigeration cycles and a heat exchanger connected to them. The high-temperature stage recycles medium-temperature refrigerants, high-temperature stage compressors, high-temperature stage condensers, expansion valves, and evaporative condensers. The low-temperature stage recycles components such as low-temperature refrigerants, low-temperature stage compressors, and expansion valves.   The work mainly includes four processes: compression, condensation, throttling and evaporation. Low-temperature stage cycle: The low-temperature refrigerant is compressed in the low-temperature stage compressor, with its pressure and temperature increasing. The high-temperature and high-pressure low-temperature refrigerant vapor then enters the evaporative condenser. Here, it is not cooled by ambient air or cooling water, but by the refrigerant liquid that evaporates and absorbs heat in the high-temperature stage cycle, thereby releasing heat and condensing into a high-pressure liquid. This is the core of the cascade system! Subsequently, the high-pressure low-temperature refrigerant liquid passes through the low-temperature stage throttling valve, where the pressure drops sharply, transforming into a low-temperature and low-pressure gas-liquid two-phase mixture. This gas-liquid mixture enters the low-temperature stage evaporator, absorbing the heat of the object to be cooled (such as the heat inside the freezer), and completely evaporates into low-temperature and low-pressure vapor, thereby achieving the purpose of refrigeration. The low-temperature and low-pressure vapor after evaporation is once again drawn into the low-temperature stage compressor to complete the cycle. 2. High-temperature stage cycle: The high-temperature refrigerant is compressed in the high-temperature stage compressor, with its pressure and temperature increasing. The high-temperature and high-pressure refrigerant vapor enters the condenser (usually cooled by air or water), releasing heat to the ambient medium and condensing into a high-pressure liquid. The high-temperature refrigerant liquid under high pressure passes through the high-temperature stage throttling valve, causing a sudden drop in pressure and transforming into a medium-temperature and low-pressure gas-liquid two-phase mixture. The mixture enters the evaporative condenser, absorbing the heat released by the refrigerant vapor from the low-temperature stage cycle (i.e., serving as the cold source for the low-temperature stage), and evaporates into low-pressure vapor. The low-pressure vapor after evaporation is once again drawn into the high-temperature stage compressor to complete the cycle.   Cascade refrigeration can reach a temperature range of -60°C to -150° C. Each stage of the cycle operates within its own reasonable compression ratio range, ensuring high compressor efficiency and reliable operation. Compared with the single-stage cycle that barely achieves low temperatures, the cascade system has a higher energy efficiency ratio under the design conditions. At the same time, it avoids problems such as excessively high exhaust temperature and deterioration of lubricating oil in single-stage systems at high compression ratios, and enables the selection of the most suitable refrigerants for the temperature zones of the high and low-temperature stages respectively.
    LEER MÁS
  • The Function of Adding Nitrogen Input to Industrial Ovens
    Oct 14, 2025
    The core function of adding nitrogen input in industrial ovens is to create an inert atmosphere environment with low oxygen or no oxygen. This is usually referred to as "nitrogen protection" or "nitrogen-filled baking".   Preventing oxidation is the most common and primary purpose. When heated in the air (with an oxygen content of approximately 21%), many materials will undergo oxidation reactions, thereby affecting product quality. Adding nitrogen input to industrial ovens can prevent the formation of oxide scale (such as rust) on the surface of metal products during heating, keep the metal bright and clean, and improve the quality of subsequent processes such as electroplating and spraying. Or to prevent the oxidation of component pins, pads and precision films at high temperatures, ensuring the quality of soldering and the long-term reliability of the product. At the same time, it can also prevent chemical and powder materials from undergoing chemical reactions with oxygen at high temperatures, thereby altering their chemical properties. 2. Some materials pose a risk of fire or explosion in high-temperature and oxygen-rich environments. Increasing nitrogen input can suppress combustion and explosion. In industries such as printing and coating, a large amount of flammable organic solvents (such as alcohol, acetone, and toluene) are volatilized during the baking process. Introducing nitrogen to reduce the oxygen concentration below the limit oxygen concentration can completely eliminate the risk of fire and explosion, which is an important safety measure. For metal and plastic powders, when they reach a certain concentration in the air, they are highly prone to explosion when exposed to open flames or high temperatures. Nitrogen protection can create a safe processing environment. 3. Improve process control and product quality. Heating in an oxygen-free or low-oxygen environment can avoid many side reactions caused by oxygen. In processes such as chip manufacturing and solar cell production, extremely high cleanliness and an oxygen-free environment are essential to prevent the oxidation of silicon wafers, metal electrodes, etc., ensuring extremely high product yield and performance. 4. While filling the oven with nitrogen, the air that originally contained moisture and oxygen inside the oven will also be "driven out". This not only prevents oxidation but also plays an auxiliary drying role, making it particularly suitable for products that are extremely sensitive to moisture.   In conclusion, adding nitrogen input to industrial ovens is to actively control the heating environment rather than passively heating in the air. This is an important technical means used in high-end manufacturing and precision processing.
    LEER MÁS
  • Lab Dust Free Oven Environmental Test Condition
    Oct 11, 2025
    Internal environmental conditions Benchmark cleanliness: At the beginning of the test, the chamber must reach the highest cleanliness level it claims (such as ISO Class 5 / Class 100). This is the premise of all tests. Before the test, the oven needs to run a long period of "self-cleaning" until the particle count shows that the concentration is stable below the standard for multiple consecutive times. Temperature and Humidity: Although the oven is a heating device, its initial state needs to be clearly defined. The initial environment for testing is usually normal temperature and humidity, for example, a temperature of 20±5°C and a relative humidity of 30-60% RH. This is crucial for testing the heating time and temperature uniformity. If the process has requirements for the dew point of the environment, it may be necessary to record the initial absolute humidity. Airflow state: The test should be conducted under the specified airflow pattern, typically in a vertical or horizontal laminar flow state. The fan must operate at the rated speed, with stable air pressure and air volume. Test load: The test is divided into two conditions: no-load and full-load. No-load is the benchmark test for equipment performance. Fill the effective working space with a fully loaded simulated load (such as metal, pallets, etc.) to simulate the harshest working conditions. Full-load testing can truly reflect the impact of products on air flow and temperature fields in actual production.   External environmental conditions 1. The cleanliness level of the external environment must be lower than or equal to the cleanliness level designed by the oven itself. For instance, when testing an oven of Class 100, it is best to do it in a room of Class 1000 or cleaner. If the external environment is too dirty, it will seriously interfere with the measurement results of the internal cleanliness of the oven when opening and closing the door or when water seeps through gaps. 2. The laboratory requires a stable temperature and humidity environment. It is generally recommended to conduct the test under standard laboratory conditions, such as 23±2°C and 50±10% RH. Avoid testing in extreme or highly volatile environments. 3. The test area should be free of strong convective winds and it is best to maintain a slight positive pressure to prevent external contaminants from entering the test area. 4. The power supply voltage and frequency should be stable within the range required by the equipment. 5. The equipment should be placed on a ground or base with less vibration. There are no large stamping equipment, fans or other strong vibration sources around.   When testing a dust-free oven, controlling the external environment is as important as measuring the internal environment. An unstable, dirty or strongly interfering external environment can lead to distorted test data and fail to truly reflect the performance of the equipment. All test conditions should be clearly recorded in the final verification report to ensure the traceability and repeatability of the tests.
    LEER MÁS
  • Cámaras de prueba de temperatura con acceso sin cita previa Requisitos de embalaje y transporte
    Oct 08, 2025
    Antes de diseñar un plan de embalaje y transporte, es necesario comprender las características del equipo y los riesgos potenciales que enfrenta. En primer lugar, el equipo suele ser de gran tamaño (decenas de metros cúbicos) y puede pesar varias toneladas. Esto determina que su transporte se considere logística de artículos grandes. Por otro lado, la capa de aislamiento de espuma de la caja es vulnerable a golpes y cortes, y la superficie rociada presenta riesgo de arañazos y depresiones. Las unidades de refrigeración, como compresores, evaporadores y condensadores, presentan riesgo de vibraciones e inclinaciones fuertes. El sistema de control eléctrico y los sensores presentan riesgo de golpes, etc. Para abordar los desafíos mencionados, se deben utilizar bloques de espuma, algodón perlado y otros rellenos dentro del equipo para fijar los soportes de muestras, los conductos de aire y otras piezas móviles, evitando que se muevan y choquen dentro de la caja. La puerta debe cerrarse desde el interior con un candado o correa especial para evitar que se abra y cierre durante el transporte. Generalmente, se colocan materiales de amortiguación en el hueco de la puerta para evitar que esta golpee directamente el marco. El embalaje principal es la parte más crucial. Se recomienda adoptar una estructura protectora multicapa, como protección contra la humedad y el polvo, amortiguación, así como un marco de caja de madera y protección externa. El plan de transporte incluye principalmenteLa primera opción para el transporte terrestre nacional son los camiones de plataforma. Son convenientes para la elevación superior y la carga y descarga lateral, y son adecuados para mercancías de gran anchura y gran altura. La segunda opción es un furgón, que ofrece mayor protección contra la lluvia y el polvo, pero es necesario garantizar que las dimensiones internas y la capacidad de carga sean suficientes. La clave reside en el uso de vehículos con airbag o suspensión neumática para maximizar la absorción de impactos.2. El transporte marítimo es el más común en el transporte internacional. El embalaje del equipo debe ser resistente a las sacudidas, la humedad y la niebla salina dentro del contenedor. Se recomienda utilizar un armario de 12 metros de altura. De ser necesario, coloque desecantes dentro del contenedor. El transporte aéreo es extremadamente costoso y solo es adecuado para proyectos urgentes o con plazos de entrega muy cortos. Existen restricciones estrictas sobre el peso y el tamaño del embalaje.3. La carga y descarga deben realizarse con grúas o montacargas. Está estrictamente prohibido usar la horquilla directamente sobre la carrocería del equipo. Las especificaciones técnicas del equipo suelen especificar claramente el ángulo máximo de inclinación (por ejemplo, 15° o 30°). Se debe mantener un estricto cumplimiento durante el transporte y la manipulación; de lo contrario, podrían producirse daños en el compresor o fugas de refrigerante. Finalmente, es necesario confirmar con el cliente con antelación las dimensiones del pasillo, la capacidad de carga del terreno y la capacidad del ascensor, y elaborar un plan de posicionamiento detallado. El embalaje y transporte de Cámaras de prueba de temperatura con acceso fácil Es esencialmente una tarea profesional que trata los equipos industriales como "bienes de precisión". Cualquier negligencia en cualquier etapa puede ocasionar enormes pérdidas económicas y retrasos en el proyecto. Por lo tanto, invertir suficientes recursos y esfuerzos en el plan de embalaje y transporte es fundamental para garantizar la llegada segura y el correcto funcionamiento del equipo.
    LEER MÁS
  • El principio de equilibrio de la temperatura dentro de la cámara de prueba mediante la válvula de aire
    Sep 22, 2025
    Su principio fundamental es un sistema de retroalimentación negativa de circuito cerrado de "calentamiento, medición y control". En pocas palabras, consiste en controlar con precisión la potencia de los elementos calefactores dentro de la caja para contrarrestar la disipación de calor causada por el entorno externo, manteniendo así una temperatura de prueba constante superior a la temperatura ambiente. El proceso mediante el cual la válvula de aire estabiliza la temperatura es un circuito cerrado dinámico y de ajuste continuo: Primero, establezca una temperatura objetivo. El sensor de temperatura mide la temperatura real dentro de la caja en tiempo real y transmite la señal al controlador PID.Cuando el controlador PID calcula el valor de error, calcula la potencia de calentamiento que debe ajustarse en función de dicho valor mediante el algoritmo PID. El algoritmo considera tres factores.P (proporción): ¿Cuál es el error de corriente? Cuanto mayor sea el error, mayor será el rango de ajuste de la potencia de calentamiento.I (integral): Acumulación de errores durante un período determinado. Se utiliza para eliminar errores estáticos (por ejemplo, si siempre hay una ligera desviación, el término de integración aumentará gradualmente su potencia hasta eliminarla por completo).D (diferencial): La tasa de variación del error actual. Si la temperatura se acerca rápidamente al objetivo, se reducirá la potencia de calentamiento con antelación para evitar un sobreimpulso.3. El controlador PID envía la señal calculada al controlador de potencia del elemento calefactor (como un relé de estado sólido SSR), regulando con precisión el voltaje o la corriente aplicada al cable calefactor, controlando así su generación de calor.4. El ventilador de circulación funciona continuamente para garantizar que el calor generado por la calefacción se distribuya de forma rápida y uniforme. Al mismo tiempo, también informa rápidamente al controlador sobre los cambios de señal del sensor de temperatura, lo que aumenta la rapidez de respuesta del sistema. El compensador de válvula de aire mide el volumen de aire, mientras que la densidad del aire varía con la temperatura. Bajo el mismo valor de presión diferencial, el caudal másico o volumétrico correspondiente al aire de diferentes densidades es diferente. Por lo tanto, la temperatura debe estabilizarse en un valor fijo conocido para que el microprocesador del instrumento pueda calcular con precisión el valor del volumen de aire en condiciones estándar, basándose en el valor de presión diferencial medido, utilizando la fórmula preestablecida. Si la temperatura es inestable, los resultados de la medición no serán fiables.
    LEER MÁS
  • Construcción de un entorno de prueba seguro en una cámara de pruebas
    Sep 16, 2025
    La clave para crear un entorno de pruebas seguro para el laboratorio cámara de prueba de alta y baja temperatura Consiste en garantizar la seguridad personal, la seguridad del equipo, la seguridad de la pieza de prueba y la precisión de los datos.1. Consideraciones de seguridad personalAntes de abrir la puerta de la cámara de alta temperatura para extraer la muestra, es necesario usar correctamente el equipo de protección resistente a altas y bajas temperaturas. Al realizar operaciones que puedan causar salpicaduras o fugas de gases extremadamente calientes o fríos, se recomienda usar mascarilla o gafas protectoras.La cámara de prueba debe instalarse en un laboratorio bien ventilado y evitar operar en espacios reducidos. Las pruebas a alta temperatura pueden liberar sustancias volátiles de la pieza de prueba. Una buena ventilación puede prevenir la acumulación de gases nocivos.Asegúrese de que las especificaciones del cable de alimentación cumplan con los requisitos del equipo y que el cable de tierra esté conectado de forma segura. Es fundamental que no toque los enchufes, interruptores ni muestras con las manos mojadas para evitar descargas eléctricas. 2. Instale el equipo correctamenteSe debe mantener la distancia mínima de seguridad especificada por el fabricante (normalmente de al menos 50 a 100 centímetros) en la parte posterior, superior y lateral del equipo para garantizar el correcto funcionamiento del condensador, el compresor y otros sistemas de disipación de calor. Una ventilación deficiente puede provocar el sobrecalentamiento del equipo, una disminución del rendimiento e incluso un incendio.Se recomienda proporcionar una línea de alimentación dedicada para la cámara de prueba para evitar compartir el mismo circuito con otros equipos de alta potencia (como acondicionadores de aire e instrumentos grandes), que pueden causar fluctuaciones de voltaje o disparos.Se recomienda que la temperatura ambiente para el funcionamiento del equipo esté entre 5 °C y 30 °C. Una temperatura ambiente excesivamente alta aumentará significativamente la carga del compresor, lo que provocará una disminución de la eficiencia de refrigeración y fallos de funcionamiento. Tenga en cuenta que el equipo no debe instalarse bajo la luz solar directa, cerca de fuentes de calor ni en lugares con fuertes vibraciones. 3. Garantizar la validez y repetibilidad de las pruebasLas muestras deben colocarse en el centro de la cámara de trabajo dentro de la caja. Debe haber suficiente espacio entre ellas y con la pared de la caja (generalmente se recomienda más de 50 mm) para garantizar una circulación de aire fluida dentro de la caja y una temperatura uniforme y estable.Después de realizar pruebas de alta temperatura y alta humedad (como en una cámara de temperatura y humedad constantes), si se requieren pruebas de baja temperatura, se deben realizar operaciones de deshumidificación para evitar la formación excesiva de hielo dentro de la cámara, lo que podría afectar el rendimiento del equipo.Está estrictamente prohibido probar sustancias inflamables, explosivas, altamente corrosivas y altamente volátiles, excepto en cámaras de prueba a prueba de explosiones diseñadas específicamente para este fin. Está estrictamente prohibido colocar mercancías peligrosas como alcohol y gasolina en cámaras comunes de alta y baja temperatura. 4. Especificaciones de operación de seguridad y procedimientos de emergenciaAntes de usar el aparato, compruebe que la puerta de la caja esté bien sellada y que el bloqueo funcione correctamente. Compruebe que la caja esté limpia y libre de objetos extraños. Confirme que la curva de temperatura (programa) sea correcta.Durante el período de prueba, es necesario verificar periódicamente si el estado de funcionamiento del equipo es normal y si hay ruidos o alarmas anormales.Normas de manipulación y colocación de muestras: Use correctamente guantes para altas y bajas temperaturas. Tras abrir la puerta, incline ligeramente el cuerpo hacia un lado para evitar que la ola de calor le dé en la cara. Retire la muestra con rapidez y cuidado y colóquela en un lugar seguro.Respuesta ante emergencias: Familiarícese con la ubicación del botón de parada de emergencia del equipo o cómo cortar rápidamente el suministro eléctrico principal en caso de emergencia. Se deben tener cerca extintores de dióxido de carbono (aptos para incendios eléctricos) en lugar de extintores de agua o espuma.
    LEER MÁS
  • Guía de prueba de baja presión para cámara de prueba de tres combinaciones de laboratorio
    Sep 13, 2025
    El sistema central de la cámara de prueba de tres combinaciones Consiste principalmente en una cámara de pruebas de presión, un sistema de vacío, un sistema especial de control de temperatura y humedad, y un controlador colaborativo de alta precisión. En esencia, se trata de un conjunto complejo de equipos que integra a la perfección una cámara de temperatura/humedad, una mesa vibratoria y un sistema de vacío (altamente simulado). El proceso de realización de pruebas de baja presión es un proceso de control colaborativo preciso. Tomando como ejemplo la prueba de baja temperatura y baja presión, su proceso de prueba es el siguiente: 1. Etapa de preparación: Coloque firmemente la muestra sobre la superficie de la mesa vibratoria dentro de la caja (si no se requiere vibración, colóquela en el soporte de muestras), cierre y bloquee la puerta de la caja para asegurar la eficacia de la tira de sellado de alta resistencia. Configure el programa de prueba completo en la interfaz de control, incluyendo: curva de presión, curva de temperatura, curva de humedad y curva de vibración.2. Vacío y enfriamiento: El sistema de control activa la bomba de vacío y la válvula de vacío se abre para extraer el aire del interior de la caja. Mientras tanto, el sistema de refrigeración comienza a funcionar, enviando aire frío a la caja, y la temperatura comienza a descender. El sistema de control coordina dinámicamente la velocidad de bombeo de la bomba de vacío y la potencia del sistema de refrigeración. Esto se debe a que, al enrarecer el aire, la eficiencia de la conducción térmica se reduce considerablemente y la dificultad de enfriamiento aumenta. Es posible que el sistema no se enfríe completamente hasta que la presión del aire descienda a un nivel determinado.3. Etapa de mantenimiento de baja presión/baja temperatura: Una vez que la presión y la temperatura alcanzan los valores establecidos, el sistema entra en estado de mantenimiento. Ante la mínima fuga en cualquier caja, el sensor de presión monitoriza la presión de aire en tiempo real. Cuando la presión de aire supera el valor establecido, la bomba de vacío comienza a bombear ligeramente automáticamente, manteniendo la presión dentro de un rango muy preciso.4. La humidificación es el paso más complejo. Si es necesario simular alta humedad en un entorno de gran altitud y baja presión, el sistema de control activará el generador de vapor externo y luego inyectará lentamente el vapor generado en la caja de baja presión a través de una válvula especial de presurización y dosificación. El sensor de humedad proporcionará control de retroalimentación.5. Una vez finalizado el período de prueba, el sistema entra en la fase de recuperación. El controlador abre lentamente la válvula de alivio de presión o la válvula de inyección de aire para permitir que el aire seco y filtrado entre lentamente en la caja, lo que permite que la presión del aire vuelva gradualmente a la presión normal. Cuando la presión y la temperatura del aire se estabilizan a temperatura ambiente y presión normal, el controlador envía una señal para indicar el final de la prueba. El operador puede entonces abrir la puerta de la caja y extraer la muestra para las pruebas y evaluaciones de rendimiento posteriores. La prueba de baja presión de la cámara de prueba de tres combinaciones es un proceso altamente complejo que depende de la coordinación precisa de su cámara resistente a la presión, un potente sistema de vacío y un sistema de control de temperatura y humedad, especialmente diseñado para entornos de baja presión. Puede simular fielmente las duras pruebas que los productos soportan simultáneamente en entornos de gran altitud, incluyendo frío extremo, baja presión de aire y humedad. Es un dispositivo de prueba clave indispensable en campos como la industria aeroespacial, la militar y la electrónica automotriz.
    LEER MÁS
1 2 3 4 5 6 7 8 9 10 20 21
Un total de 21paginas

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

contáctanos