La relación entre la altitud de la atmósfera estándar y la temperatura y presión del aireLa atmósfera estándar a la que se hace referencia aquí se refiere a la "atmósfera estándar de la OACI de 1964" adoptada por la Organización de Aviación Civil Internacional. Por debajo de una altitud de 32 km, es lo mismo que la "atmósfera estándar estadounidense de 1976". Los cambios en la temperatura del aire cerca de la superficie (por debajo de 32 km) son:Tierra: La temperatura del aire es 15,0 ℃, la presión del aire P = 1013,25 mb = 0,101325 MPaTasa de cambio de temperatura desde el suelo hasta la elevación 11 km: -6,5 ℃/ kmEn la interfaz de 11km:La temperatura del aire es -56,5 ℃ y la presión del aire P = 226,32 mbTasa de cambio de temperatura en elevaciones de 11 a 20 km: 0,0 ℃/kmTasa de cambio de temperatura en altitud 20-32 km: +1,0/kmLa siguiente tabla enumera los valores de temperatura y presión de la atmósfera estándar a diferentes altitudes. En la tabla, "gpm" es el medidor de altitud y su signo negativo representa la altitud.gpmTemperatura℃Presión atmosférica (mb)gpmTemperatura℃Presión atmosférica (mb)gpmTemperatura℃Presión atmosférica (mb)-40017.61062.24800-16.2554,810000-50.0264,4-20016.31037.55000-17,5540.210200-51,3256,4015.01013.35200-18,8525,910400-52,6248,620013.7989,55400-20.1511.910600-53,9241.040012.4966.15600-21,4498,310800-55,2233,660011.1943.25800-22,7484,911000-56,5226,38009.8920,86000-24.0471,811500-56,5209.210008.5898,76200-25,3459.012000-56,5193.312007.2877.26400-26,6446,512500-56,5178,714005.9856.06600-27,9434.313000-56,5165.116004.6835.26800-29,2422.313500-56,5152,618003.3814,97000-30,5410.614000-56,5141.020002.0795.07200-31,8399,214500-56,5130.322000,7775,47400-33.1388.015000-56,5120,52400-0,6756,37600-34,4377.115500-56,5111.32600-1.9737,57800-35,7366,416000-56,5102,92800-3.2719.18000-37.0356.017000-56,587,93000-4,5701.18200-38,3345,818000-56,575.03200-5,8683,48400-39,6335,919000-56,564.13400-7.1666,28600-40,9326.220000-56,554,73600-8.4649,28800-42,2316,722000-54,540.03800-9,7632,69000-43,5307.424000-52,529.34000-11.0616,49200-44,8298,426000-50,521,54200-12.3600.59400-46,1289,628000-48,515.94400-13,6584,99600-47,4281.030000-46,511.74600-14,9569,79800-48,7272,632000-44,58.7Relación de conversión de unidades1 mbar = 100 Pa = 0,1 KPa = 0,0001 Mpa1 pie = 0,3048 m = 304,8 mm55000 pies*0,3048=16764 mLab Companion se centró en la producción de equipos de prueba ambiental de confiabilidad durante 19 años y ayudó con éxito a 18 000 empresas a probar la confiabilidad y el desempeño ambiental de productos y materiales.Los principales productos son: cámara de prueba de alta temperatura, cámara de prueba de alta y baja temperatura y humedad, cámara de prueba ambiental sin cita previa, cámara de prueba de ciclos rápidos de temperatura, cámara de prueba de choque térmico, cámara de prueba de baja presión y alta temperatura, vibración de la cámara integral y otras soluciones de fabricación de equipos de prueba para ayudar a las empresas de I + D a ser más grandes y más fuertes.Si necesita saber más sobre los productos de la cámara de pruebas ambientales, puede buscar en el sitio web oficial de "Lab Companion", no dude en contactarnos para realizar consultas, podemos brindarle orientación y asesoramiento técnico profesional personalizado. .
Esquema de prueba de simulación ambiental de pilas de combustible de hidrógeno
En la actualidad, el modelo de desarrollo económico basado en el consumo de energías no renovables a base de carbón, petróleo y gas natural ha propiciado una contaminación ambiental y un efecto invernadero cada vez más destacados. Para lograr el desarrollo sostenible de los seres humanos se ha establecido una relación armoniosa entre el hombre y la naturaleza. El desarrollo de energías verdes sostenibles se ha convertido en un tema de gran preocupación en el mundo.
Como energía limpia que puede almacenar energía residual y promover la transformación de la energía fósil tradicional a energía verde, la energía del hidrógeno tiene una densidad energética (140 MJ/kg) que es 3 veces mayor que la del petróleo y 4,5 veces mayor que la del carbón, y se considera como una dirección tecnológica subversiva de la futura revolución energética. La pila de combustible de hidrógeno es el vehículo clave para convertir la energía del hidrógeno en energía eléctrica. Después de que se propusiera el objetivo de la neutralidad de carbono y el pico de carbono "doble carbono", ha ganado nueva atención en la investigación básica y la aplicación industrial.
La cámara de prueba ambiental de celda de combustible de hidrógeno de Lab Companion cumple con: pila y módulo de celda de combustible: 1W~8KW, motor de celda de combustible: 30KW~150KW Prueba de arranque en frío a baja temperatura: -40~0℃ Prueba de almacenamiento a baja temperatura: -40~0℃ Alta prueba de almacenamiento de temperatura: 0 ~ 100 ℃.
Introducción de la cámara de pruebas ambientales de pilas de combustible de hidrógeno
El producto adopta un diseño modular funcional, a prueba de explosiones y antiestático, y cumple con los estándares de prueba pertinentes. El producto tiene las características de alta confiabilidad y advertencia de seguridad integral, que es adecuado para la prueba del sistema del reactor y del motor de pila de combustible. Potencia aplicable hasta 150 KW del sistema de pila de combustible, prueba de baja temperatura (almacenamiento, arranque, rendimiento), prueba de alta temperatura (almacenamiento, arranque, rendimiento), prueba de calor húmedo (alta temperatura y humedad).
Piezas de seguridad:
1. Cámara a prueba de explosiones: registra en tiempo real la situación de prueba completa en la caja, fácil de optimizar o ajustar a tiempo.
2. Detector de llama ultravioleta: detector de incendios inteligente, preciso y de alta velocidad, identificación precisa de señales de llama.
3. Salida de escape de aire de emergencia: agote el gas combustible tóxico en la caja para garantizar la seguridad de la prueba.
4. Sistema de alarma y detección de gas: identificación inteligente y rápida de gas combustible, genera automáticamente señales de alarma.
5. Unidad fría con mecanismo de tornillo unipolar paralelo doble: Tiene las características de función de clasificación, gran potencia, tamaño reducido, etc.
6. Sistema de preenfriamiento de gas: controle rápidamente los requisitos de temperatura del gas para garantizar condiciones de arranque en frío.
7. Rejilla de prueba de pila: rejilla de prueba de pila de acero inoxidable, equipada con un sistema de refrigeración auxiliar de refrigeración por agua.
Proyecto de prueba del sistema de pila de combustible.
Proyecto de prueba del sistema de pila de combustible.
Prueba de estanqueidad al aire del motor de pila de combustible
Calidad del sistema de generación de energía.
El volumen de la pila de baterías.
Detección de resistencia de aislamiento
Prueba de características iniciales
Prueba de arranque de potencia nominal
Prueba característica de estado estacionario
Prueba de característica de potencia nominal
Prueba característica de potencia máxima
Prueba de característica de respuesta dinámica
Prueba de adaptabilidad a altas temperaturas.
Prueba de rendimiento del sistema de motor de pila de combustible
Prueba de resistencia a las vibraciones
Prueba de adaptabilidad a baja temperatura.
Prueba de arranque (baja temperatura)
Prueba de rendimiento de generación de energía
prueba de apagado
Prueba de almacenamiento a baja temperatura
Procedimientos de arranque y operación a baja temperatura.
/
/
Elementos de prueba de reactores y módulos.
Elementos de prueba de reactores y módulos.
Inspección de rutina
Prueba de fuga de gas
Prueba de funcionamiento normal
Permitir prueba de presión de trabajo
Prueba de presión del sistema de refrigeración.
Prueba de canalización de gases
Ensayos de resistencia a impactos y vibraciones.
Prueba de sobrecarga eléctrica
Prueba de rigidez dieléctrica
Prueba de diferencia de presión
Prueba de concentración de gas inflamable
Prueba de sobrepresión
Prueba de fuga de hidrógeno
Prueba del ciclo de congelación/descongelación
Prueba de almacenamiento a alta temperatura
Prueba de estanqueidad al aire
Prueba de falta de combustible
Prueba de deficiencia de oxígeno/oxidante
Prueba de cortocircuito
Prueba de falta de refrigeración/enfriamiento deficiente
Prueba del sistema de monitoreo de penetración
prueba de tierra
Prueba inicial
Prueba de rendimiento de generación de energía
prueba de apagado
Prueba de almacenamiento a baja temperatura
Prueba de arranque a baja temperatura
Normas aplicables al producto:
GB/T 10592-2008 Condiciones técnicas de la cámara de prueba de alta y baja temperatura
GB/T 10586-2006 Condiciones técnicas de la cámara de prueba de humedad
GB/T31467.3-2015
ES/T31485-2015
GB/T2423.1-2208
GB/T2423.2-2008
GB/T2423.3-2006
GB/T2523.4-2008
Prueba de confiabilidad de la lámpara de bicicletaLas bicicletas se encuentran en un entorno social de altos precios del petróleo y protección del medio ambiente, con protección del medio ambiente, fitness, vida lenta... Como los equipos deportivos recreativos multifuncionales y las luces de bicicleta son una parte indispensable e importante del ciclismo nocturno, si el La compra de luces de bicicleta de bajo costo y no después de la prueba de confiabilidad, la falla al conducir de noche o a través del túnel, no solo para el ciclista tiene una seria amenaza para la seguridad de la vida, al conducir, pueden ocurrir accidentes de colisión porque el conductor no puede ver al ciclista. , por eso es importante contar con luces de bicicleta que pasen la prueba de confiabilidad.Razones del fallo de la lámpara de bicicleta:a. Deformación, fragilidad y decoloración de la carcasa de la lámpara causada por la alta temperatura de la lámparab. Coloración amarillenta y fragilidad de la carcasa de la lámpara causada por la exposición a los rayos ultravioleta al aire libre.do. Subir y bajar colinas debido a cambios de temperatura altos y bajos en el ambiente causados por fallas en las lámparasd. Consumo anormal de energía de las luces del coche.mi. Fallan las luces tras mucho tiempo de lluviaF. La falla en caliente ocurre cuando las luces están encendidas durante mucho tiempogramo. Durante la conducción, la lámpara se suelta y hace que la lámpara se caiga.h. Fallo en el circuito de la lámpara causado por la vibración y la pendiente de la carreteraClasificación de prueba de lámparas de bicicleta:Prueba ambiental, prueba mecánica, prueba de radiación, prueba eléctrica.Prueba de características iniciales:Tome 30, encienda la lámpara con fuente de alimentación de CC de acuerdo con el voltaje nominal, después de que las características sean estables, mida la distancia entre la corriente y el centro óptico, menos de 10 productos defectuosos están calificados, más de 22 no están calificados, si el El número de productos defectuosos está entre 11 y 22, se recolectan otras 100 muestras para realizar pruebas y el número de productos defectuosos bajo la inspección original se califica cuando el número es inferior a 22. Si el número excede 22, se descalifica.Prueba de vida: Diez bombillas pasaron la prueba característica inicial y 8 de ellas cumplieron los requisitos.Velocidad de prueba de bicicleta: entorno simulado de 15 km/hPrueba de alta temperatura (prueba de temperatura): 80 ℃, 85 ℃, 90 ℃Prueba de baja temperatura: -20 ℃Ciclo de temperatura: 50 ℃ (60 min) → temperatura normal (30 min) → 20 (60 min) → temperatura normal (30 min), 2 ciclosPrueba de calor húmedo: 30 ℃/95% HR/48 horasPrueba de detección de estrés: Alta temperatura: 85 ℃ ← → Baja temperatura: -25 ℃, tiempo de permanencia: 30 min, ciclo: 5 ciclos, encendido, tiempo: ≧ 24 hPrueba de niebla salina de concha: 20 ℃/15 % de concentración de sal/pulverización durante 6 horas, método de determinación: la superficie de la carcasa no debe presentar óxido evidentePrueba de impermeabilidad:Descripción: La clasificación IPX de las lámparas resistentes a la lluvia debe ser al menos IPX3 o superiorIPX3 (resistencia al agua): Deje caer 10 litros de agua verticalmente desde una altura de 200 cm a 60˚ (tiempo de prueba: 10 minutos)IPX4 (anti-agua, anti-salpicaduras): 10 litros de agua caen desde 30 ~ 50 cm en cualquier dirección (tiempo de prueba: 10 minutos)IPX5:3m 12,5L de agua desde cualquier dirección [agua débil](tiempo de prueba: 3 minutos)IPX6: 3 m Rociado fuerte 30 litros desde cualquier dirección [agua fuerte, presión: 100 KPa] (tiempo de prueba: 3 minutos)IPX7 (resistente al agua): se puede utilizar durante 30 minutos a menos de 1 m en agua.Prueba de vibración: número de vibración 11,7 ~ 20 Hz/amplitud: 11 ~ 4 mm/tiempo: arriba y abajo 2 h, aproximadamente 2 h, 2 h antes y después de 2 h/aceleración 4 ~ 5 gPrueba de caída: 1 metro (caída con la mano), 2 metros (caída en bicicleta, caída desde el cuadro)/suelo de hormigón/cuatro veces/cuatro ladosPrueba de impacto: Plataforma de madera plana de 10 mm/Distancia: 1 m/diámetro Masa de 20 mm Bola de acero de 36 g Caída libre/superficie superior y lateral una vezImpacto de baja temperatura: Cuando la muestra esté fría a -5 ℃, mantenga esta temperatura durante tres horas y luego realice la prueba de impacto.Prueba de irradiación: prueba de brillo de irradiación de larga duración, prueba de irradiación de bajo voltaje, brillo de luz, color de luzLámpara de bicicleta clasificación de sustantivos:
Condiciones de prueba de la computadora portátilLa computadora portátil desde la evolución inicial de la pantalla de 12 pulgadas hasta la actual pantalla con retroiluminación LED, su eficiencia informática y procesamiento 3D, no se perderán frente a la computadora de escritorio general, y el peso es cada vez menos pesado, los requisitos de prueba de confiabilidad relativa para toda la computadora portátil se está volviendo cada vez más estricta, desde el empaque inicial hasta el arranque actual, las tradicionales altas temperaturas y alta humedad hasta la prueba de condensación actual. Desde el rango de temperatura y humedad del entorno general hasta la prueba del desierto como condición común, estas son las partes que deben considerarse en la producción de componentes y diseño relacionados con computadoras portátiles, las condiciones de prueba de las pruebas ambientales relevantes recopiladas hasta ahora. están organizados y compartidos con usted.Prueba de pulsación del teclado:Prueba uno:GB: 1 millón de vecesPresión clave: 0,3 ~ 0,8 (N)Carrera del botón: 0,3 ~ 1,5 (mm)Prueba 2: Presión de las teclas: 75 g (± 10 g). Pruebe 10 teclas durante 14 días, 240 veces por minuto, un total de aproximadamente 4,83 millones de veces, una vez cada 1 millón de veces.Fabricantes japoneses: 2 a 5 millones de vecesFabricante taiwanés 1: más de 8 millones de vecesFabricante de Taiwán 2:10 millones de vecesPrueba de extracción del interruptor de alimentación y del conector:Este modelo de prueba simula las fuerzas laterales que cada conector puede soportar en condiciones de uso anormal. Elementos de prueba generales para portátiles: USB, 1394, PS2, RJ45, módem, VGA... Fuerza de aplicación igual de 5 kg (50 veces), tirar y enchufar hacia arriba y hacia abajo hacia la izquierda y hacia la derecha.Prueba del interruptor de alimentación y del enchufe del conector:4000 veces (fuente de alimentación)Prueba de apertura y cierre de la cubierta de la pantalla:Fabricantes taiwaneses: abren y cierran 20.000 vecesFabricante japonés 1: prueba de apertura y cierre 85.000 vecesFabricante japonés 2: abriendo y cerrando 30.000 vecesPrueba del interruptor de recuperación y espera del sistema:Tipo de nota general: intervalo de 10 segundos, 1000 ciclosFabricante japonés: prueba del interruptor de recuperación y espera del sistema 2000 vecesCausas comunes de falla de una computadora portátil:☆ Caen objetos extraños sobre el cuaderno.☆ Se cae de la mesa mientras está en uso☆ Guarde el cuaderno en un bolso o maletín☆ Temperatura extremadamente alta o baja ☆ Uso normal (uso excesivo)☆ Uso incorrecto en destinos turísticos☆PCMCIA insertado incorrectamente☆ Coloque objetos extraños en el tecladoPrueba de caída de apagado:Tipo de cuaderno general: 76 cm.Caída del paquete GB: 100 cmComputadoras portátiles japonesas y del ejército estadounidense: la altura de la computadora es de 90 cm desde todos los lados, lados y esquinas, un total de 26 ladosPlataforma: 74 cm (se requiere embalaje)Terreno: 90 cm (se requiere embalaje)TOSHIBA&BENQ 100 cmPrueba de caída de arranque:Japonés: caída de bota de 10 cm.Taiwán: caída de bota de 74 cmChoque de temperatura en la placa principal del portátil:Pendiente 20℃/minNúmero de ciclos 50 ciclos (sin operación durante el impacto)Los estándares técnicos y las condiciones de prueba del ejército de EE. UU. para la adquisición de computadoras portátiles son los siguientes:Prueba de impacto: deje caer la computadora 26 veces desde todos los lados, costados y esquinas a una altura de 90 cmPrueba de resistencia a terremotos: frecuencia de 20 Hz ~ 1000 Hz, 1000 Hz ~ 2000 Hz una vez por hora Vibración continua de los ejes X, Y y ZPrueba de temperatura: 0 ℃ ~ 60 ℃ 72 horas de horno de envejecimientoPrueba de impermeabilidad: rocíe agua en la computadora durante 10 minutos en todas las direcciones y la velocidad de rociado de agua es de 1 mm por minuto.Prueba de polvo: Pulverizar la concentración de 60.000 mg/por metro cúbico de polvo durante 2 segundos (intervalo de 10 minutos, 10 veces consecutivas, tiempo 1 hora)Cumple con las especificaciones militares MIL-STD-810Prueba de impermeabilidad:Computadora portátil del Ejército de EE. UU.: clase de protección: IP54 (polvo y lluvia) Roció la computadora con agua en todas direcciones durante 10 minutos a una velocidad de 1 mm por minuto.Prueba a prueba de polvo:Cuaderno del Ejército de EE. UU.: Pulverizar una concentración de 60.000 mg/m3 de polvo durante 2 segundos (intervalos de 10 minutos, 10 veces consecutivas, tiempo 1 hora)
Detección de estrés cíclico de temperatura (2)Introducción de parámetros de tensión para la detección de tensión cíclica de temperatura:Los parámetros de tensión de la detección de tensión cíclica de temperatura incluyen principalmente lo siguiente: rango extremo de temperatura alta y baja, tiempo de permanencia, variabilidad de temperatura, número de cicloRango extremo de temperatura alta y baja: cuanto mayor sea el rango de temperatura extrema alta y baja, menos ciclos se requieren, menor será el costo, pero no puede exceder el producto que puede soportar el límite, no causa un nuevo principio de falla, la diferencia entre el Los límites superior e inferior de cambio de temperatura no son inferiores a 88°C, el rango típico de cambio es de -54°C a 55°C.Tiempo de permanencia: Además, el tiempo de permanencia no puede ser demasiado corto, de lo contrario será demasiado tarde para que el producto bajo prueba produzca cambios de tensión de expansión y contracción térmica, en cuanto al tiempo de permanencia, el tiempo de permanencia de diferentes productos es diferente, usted Puede consultar los requisitos de especificación relevantes.Número de ciclos: En cuanto al número de ciclos de detección de tensión cíclica de temperatura, también se determina considerando las características del producto, la complejidad, los límites superior e inferior de temperatura y la tasa de detección, y el número de detección no debe excederse, de lo contrario causará daño innecesario al producto y no puede mejorar la tasa de detección. El número de ciclos de temperatura varía de 1 a 10 ciclos [cribado ordinario, cribado primario] a 20 a 60 ciclos [cribado de precisión, cribado secundario], para la eliminación de los defectos de mano de obra más probables, se pueden eliminar eficazmente entre 6 y 10 ciclos. , además de la efectividad del ciclo de temperatura, depende principalmente de la variación de temperatura de la superficie del producto, más que de la variación de temperatura dentro de la caja de prueba.Hay siete parámetros principales que influyen en el ciclo de temperatura:(1) Rango de temperatura(2) Número de ciclos(3) Tasa de temperatura de Chang(4) Tiempo de permanencia(5) Velocidades del flujo de aire(6) Uniformidad del estrés(7) Prueba de funcionamiento o no (Condición de funcionamiento del producto)Clasificación de fatiga por detección de estrés:La clasificación general de la investigación sobre la fatiga se puede dividir en fatiga de ciclo alto, fatiga de ciclo bajo y crecimiento de grietas por fatiga. En el aspecto de Fatiga de bajo ciclo, se puede subdividir en Fatiga Térmica y Fatiga Isotérmica.Acrónimos de detección de estrés:ESS: Detección de estrés ambientalFBT: Probador de placa de funciónICA: analizador de circuitosTIC: probador de circuitosLBS: probador de cortocircuito de placa de cargaMTBF: tiempo medio entre fallosTiempo de los ciclos de temperatura:a.MIL-STD-2164(GJB 1302-90): En la prueba de eliminación de defectos, el número de ciclos de temperatura es 10, 12 veces, y en la detección sin problemas es 10 ~ 20 veces o 12 ~ 24 veces. Para eliminar los defectos de mano de obra más probables, se necesitan entre 6 y 10 ciclos para eliminarlos de manera efectiva. 1 ~ 10 ciclos [cribado general, cribado primario], 20 ~ 60 ciclos [cribado de precisión, cribado secundario].B.od-hdbk-344 (GJB/DZ34) El equipo de detección inicial y el nivel de unidad utilizan de 10 a 20 bucles (normalmente ≧ 10), el nivel de componente utiliza de 20 a 40 bucles (normalmente ≧ 25).Variabilidad de temperatura:a.MIL-STD-2164(GJB1032) establece claramente: [Tasa de cambio de temperatura del ciclo de temperatura 5 ℃/min]B.od-hdbk-344 (GJB/DZ34) Nivel de componente 15 °C /min, sistema 5 °C /mindo. La detección de tensión cíclica de temperatura generalmente no se especifica como variabilidad de temperatura, y su tasa de variación de grados comúnmente utilizada suele ser de 5 °C/min.
EC-35EXT, Baño superior a temperatura constante (306L)ProyectoTipoSerieEXTFunciónLa temperatura ocurre de una maneraMétodo de bulbo húmedo secoRango de temperatura-70 ~ +150 ℃Rango de temperaturaPor debajo de + 100 ℃±0,3 ℃Por encima de + 101 ℃±0,5 ℃Distribución de temperatura Por debajo de + 100 ℃±0. 7℃Por encima de + 101 ℃±1,0 ℃La temperatura baja el tiempo.+125 ~-55 ℃Dentro de 18 puntos (10 ℃ / punto de cambio de temperatura promedio)Tiempo de aumento de temperatura-55 ~+125 ℃En 18 minutos (10 ℃ / minuto)Se analizó el volumen interno del útero.306LMétodo de pulgadas de la sala de prueba (ancho, profundidad y altura)630 mm × 540 mm × 900 mmMétodo de pulgadas del producto (ancho, profundidad y altura)1100 mm × 1960 mm × 1900 mmhacer el materialEquipo externoPanel de control de la sala de pruebassala de maquinasLa placa de acero interductil en frío es de color gris oscuro.AdentroPlaca de acero inoxidable (SUS304,2B pulida)Material de calor rotosala de pruebasresina sintética durapuertaAlgodón espuma de resina sintética dura, algodón de vidrioProyectoTipoSerieEXTDispositivo deshumidificador de refrigeraciónMétodo de enfriamiento Modo de congelación y contracción de sección mecánica y modo de congelación binariaMedio de enfriamiento; refrigerante Lado de un solo segmentoR 404ALado binario de alta temperatura/baja temperaturaR 404A / R23Refrigeración y deshumidificadorTipo de disipador de calor mixto multicanalel condensador(refrigerado por agua)calorificadorFormaCalentador de aleación de níquel-cromo resistente al calorSopladorFormaAbanico para revolverControladorLa temperatura está fijada-72,0 ~ + 152,0 ℃Configuración de tiempo Fanny0 ~ 999 Tiempo 59 minutos (fórmula) 0 ~ 20000 Tiempo 59 minutos (fórmula fórmula)Establecer energía de descomposiciónLa temperatura fue de 0,1 ℃ durante 1 min.Indicar precisiónTemperatura ± 0,8 ℃ (típico), tiempo ± 100 PPMTipo de vacacionesValor o programaNúmero de etapa20 etapas / 1 programaEl número de procedimientosEl número máximo de programas de fuerza entrante (RAM) es 32 programasEl número máximo de programas ROM internos es 13 programas式Número de ida y vueltaMáx. 98, o ilimitadoNúmero de repeticiones de ida y vueltaMáximo 3 vecesDesplazar el finalPt 100Ω (a 0 ℃), grado (JIS C 1604-1997)Acción de controlAl dividir la acción PIDFunción de endovirusFunción de entrega anticipada, función de espera, función de mantenimiento del valor de configuración, función de protección contra cortes de energía,Función de selección de acción de potencia, función de mantenimiento, función de transporte de ida y vuelta,Función de entrega de tiempo, función de salida de señal de tiempo, función de prevención de sobrecalentamiento y sobreenfriamiento,Función de representación anormal, función de salida de alarma externa, función de representación de paradigma de configuración,Función de selección del tipo de transporte, el tiempo de cálculo representa la función, la función de la lámpara de la lámpara de ranuraProyectoTipoSerieEXHPanel de controlmaquina de equipoPanel de operación LCD (tipo panel de contacto),Representa lámpara (alimentación, transporte, anormal), terminal de fuente de alimentación de prueba, terminal de alarma externa,Terminal de salida de señal horaria, conector del cable de alimentación Dispositivo protector Ciclo frigoríficoDispositivo de protección contra sobrecargas, dispositivo de bloqueo alto.calorificadorDispositivo de protección contra sobrecalentamiento, fusible de temperaturaSopladorDispositivo de protección contra sobrecargaPanel de controlDisyuntor de fugas para fuente de alimentación, fusible (calentador),Fusible (para circuito de operación), dispositivo de protección contra aumento de temperatura (para prueba),Dispositivo de prevención de sobreenfriamiento por aumento de temperatura (material de prueba, en microcomputadora)El pago pertenece al producto.Material de prueba cobertizo cobertizo por * 8Cobertizo de acero inoxidable (2), cobertizo (4)FusibleFusibles de protección del circuito de operación (2)Especificaciones operativas( 1 ) DemásBolo (orificio para cable: 1)Productos de equipamientoAdventiciaVidrio resistente al calor: 270 mm: 190 mm1 Orificio para cablesDiámetro interior de 50 mm.1 El comedero dentro de la lámpara.AC100V 15W Bola blanca caliente1 Rueda 6 Ajuste horizontal 6 Características del electrovirusLa fuente de alimentación es * 5.1 CA Trifásico 380V 50HzCorriente de carga máxima60ACapacidad del disyuntor de fugas para el suministro de energía.80ACorriente sensorial 30mAEspesor de distribución de energía60 mm2Manguera aislante de cauchoGrosor del cable de tierra14 mm2Agua de refrigeración a * 5,3Rendimiento de agua5000 L /h (cuando la temperatura de entrada del agua de refrigeración es de 32 ℃)presión de agua0,1 ~ 0,5 MPaDiámetro del tubo lateral del dispositivo.PT1 1/4 TuberíaTubería de drenaje * 5.4PT1/2 Peso del producto
AEC-Q100: Mecanismo de falla basado en la certificación de prueba de esfuerzo de circuito integradoCon el progreso de la tecnología electrónica automotriz, existen muchos sistemas complicados de control de gestión de datos en los automóviles actuales y, a través de muchos circuitos independientes, para transmitir las señales requeridas entre cada módulo, el sistema dentro del automóvil es como la "arquitectura maestro-esclavo" de En la red informática, en la unidad de control principal y en cada módulo periférico, las piezas electrónicas del automóvil se dividen en tres categorías. Incluyendo tres categorías de IC, semiconductores discretos y componentes pasivos, para garantizar que estos componentes electrónicos automotrices cumplan con los más altos estándares de anquan automotriz, la Asociación Estadounidense de Electrónica Automotriz (AEC, el Consejo de Electrónica Automotriz es un conjunto de estándares [AEC-Q100] diseñado para piezas activas [microcontroladores y circuitos integrados...] y [[AEC-Q200] diseñado para componentes pasivos, que especifica la calidad y confiabilidad del producto que se debe lograr para las piezas pasivas. Aec-q100 es el estándar de prueba de confiabilidad del vehículo formulado. por la organización AEC, que es una entrada importante para los fabricantes de 3C e IC en el módulo de fábrica de automóviles internacional, y también una tecnología importante para mejorar la calidad de confiabilidad de IC de Taiwán. Además, la fábrica de automóviles internacional ha aprobado el estándar anquan (ISO). -26262). AEC-Q100 es el requisito básico para pasar este estándar.Lista de piezas electrónicas automotrices necesarias para pasar AECQ-100:Memoria desechable para automóviles, regulador reductor de fuente de alimentación, fotoacoplador para automóviles, sensor de acelerómetro de tres ejes, dispositivo de video jiema, rectificador, sensor de luz ambiental, memoria ferroeléctrica no volátil, IC de administración de energía, memoria flash integrada, regulador CC/CC, vehículo dispositivo de comunicación de red de calibre, IC de controlador LCD, amplificador diferencial de fuente de alimentación única, interruptor de proximidad capacitivo apagado, controlador LED de alto brillo, conmutador asíncrono, IC de 600 V, IC de GPS, chip del sistema avanzado de asistencia al conductor ADAS, receptor GNSS, amplificador frontal GNSS. .. Esperemos.Categorías y pruebas AEC-Q100:Descripción: Especificación AEC-Q100 7 categorías principales con un total de 41 pruebasGrupo A- PRUEBAS DE ESTRÉS AMBIENTAL ACELERADO consta de 6 pruebas: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGrupo B- PRUEBAS DE SIMULACIÓN ACELERADA DE POR VIDA consta de tres pruebas: HTOL, ELFR y EDRPRUEBAS DE INTEGRIDAD DEL ENSAMBLAJE DEL PAQUETE consta de 6 pruebas: WBS, WBP, SD, PD, SBS, LIGrupo D- La prueba de CONFIABILIDAD DE FABRICACIÓN DE Matrices consta de 5 PRUEBAS: EM, TDDB, HCI, NBTI, SMEl grupo PRUEBAS DE VERIFICACIÓN ELÉCTRICA consta de 11 pruebas, entre las que se incluyen TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC y SER.PRUEBAS DE DETECCIÓN DE defectos F del grupo: 11 pruebas, que incluyen: PAT, SBALas PRUEBAS DE INTEGRIDAD DEL PAQUETE DE CAVIDAD constan de 8 pruebas, que incluyen: MS, VFV, CA, GFL, DROP, LT, DS, IWVBreve descripción de los elementos de prueba:CA: Olla a presiónCA: aceleración constanteCDM: modo de dispositivo cargado con descarga electrostáticaCHAR: indica la descripción de la característicaGOTA: El paquete caeDS: prueba de corte de virutaED: Distribución eléctricaEDR: durabilidad del almacenamiento no propenso a fallas, retención de datos, vida útilELFR: Tasa de fracaso en la vida tempranaEM: electromigraciónEMC: Compatibilidad electromagnéticaFG: nivel de fallaGFL: prueba de fuga de aire gruesa/finaGL: Fuga en la compuerta causada por efecto termoeléctricoHBM: indica el modo humano de descarga electrostáticaHTSL: vida útil en almacenamiento a alta temperaturaHTOL: vida útil a alta temperaturaHCL: efecto de inyección de portador calienteIWV: Prueba higroscópica internaLI: integridad del pinLT: Prueba de torsión de la placa de cubiertaLU: efecto de bloqueoMM: indica el modo mecánico de descarga electrostáticaMS: Choque mecánicoNBTI: inestabilidad de la temperatura del sesgo ricoPAT: Prueba de promedio de procesoPC: preprocesamientoPD: tamaño físicoPTC: ciclo de temperatura de potenciaSBA: Análisis estadístico de rendimientoSBS: corte de bolas de estañoSC: característica de cortocircuitoSD: soldabilidadSER: Tasa de error suaveSM: Migración de estrésTC: ciclo de temperaturaTDDB: Tiempo de ruptura dieléctricaTEST: Parámetros de función antes y después de la prueba de estrésTH: humedad y calor sin prejuiciosTHB, HAST: Pruebas de temperatura, humedad o estrés altamente acelerado con sesgo aplicadoUHST: prueba de estrés de alta aceleración sin sesgosVFV: vibración aleatoriaWBS: corte de alambre de soldaduraWBP: tensión del alambre de soldaduraCondiciones de prueba de temperatura y humedad acabado:THB (temperatura y humedad con polarización aplicada, según JESD22 A101): 85℃/85%RH/1000h/biasHAST (prueba de esfuerzo de alta aceleración según JESD22 A110): 130 ℃/85 % H.R./96 h/bias, 110 ℃/85 % H.R./264 h/biasOlla a presión AC, según JEDS22-A102:121 ℃/100%H.R./96hUHST Prueba de esfuerzo de alta aceleración sin sesgo, según JEDS22-A118, equipo: HAST-S): 110 ℃/85 % R.H./264 hTH calor húmedo sin polarización, según JEDS22-A101, equipo: THS): 85 ℃/85 % R.H./1000 hTC(ciclo de temperatura, según JEDS22-A104, equipo: TSK, TC):Nivel 0: -50 ℃ ← → 150 ℃/2000 ciclosNivel 1: -50 ℃ ← → 150 ℃/1000 ciclosNivel 2: -50 ℃ ← → 150 ℃/500 ciclosNivel 3: -50 ℃ ← → 125 ℃/500 ciclosNivel 4: -10 ℃ ← → 105 ℃/500 ciclosPTC (ciclo de temperatura de potencia, según JEDS22-A105, equipo: TSK):Nivel 0: -40 ℃ ← → 150 ℃/1000 ciclosNivel 1: -65 ℃ ← → 125 ℃/1000 ciclosNivel 2 a 4: -65 ℃ ← → 105 ℃/500 ciclosHTSL (vida útil de almacenamiento a alta temperatura, JEDS22-A103, dispositivo: HORNO):Piezas del paquete de plástico: Grado 0:150 ℃/2000hGrado 1:150 ℃/1000hGrado 2 a 4:125 ℃/1000 h o 150 ℃/5000 hPiezas del paquete cerámico: 200 ℃/72 hHTOL (vida útil a alta temperatura, JEDS22-A108, equipo: HORNO):Grado 0:150 ℃/1000hClase 1: 150 ℃/408 h o 125 ℃/1000 hGrado 2: 125 ℃/408 h o 105 ℃/1000 hGrado 3: 105 ℃/408 h o 85 ℃/1000 hClase 4: 90 ℃/408 h o 70 ℃/1000 h ELFR (Tasa de fracaso en la vida temprana, AEC-Q100-008) : Los dispositivos que pasan esta prueba de estrés se pueden usar para otras pruebas de estrés, se pueden usar datos generales y las pruebas antes y después de ELFR se realizan en condiciones de temperatura suave y alta.
Equipo de prueba ambiental de confiabilidad combinado con aplicaciones de detección y control de temperatura de múltiples pistas
El equipo de prueba ambiental incluye una cámara de prueba de temperatura y humedad constante, una cámara de prueba de choque frío y caliente, una cámara de prueba de ciclo de temperatura, un horno sin viento... Todos estos equipos de prueba se encuentran en un entorno simulado de temperatura y humedad que impactan en el producto, para averiguarlo. El proceso de diseño, producción, almacenamiento, transporte y uso puede aparecer defectos del producto, anteriormente solo se simulaba la temperatura del aire del área de prueba, pero en los nuevos estándares internacionales y las nuevas condiciones de prueba de la fábrica internacional, el comienzo de los requisitos basados en la temperatura del aire. no lo es. Es la temperatura de la superficie del producto de prueba. Además, la temperatura de la superficie también debe medirse y registrarse sincrónicamente durante el proceso de prueba para el análisis posterior a la prueba. El equipo de prueba ambiental relevante debe combinarse con el control de la temperatura de la superficie y la aplicación de la medición de la temperatura de la superficie se resume a continuación.
Aplicación de detección de temperatura de la mesa de prueba de la cámara de prueba de temperatura y humedad constantes:
Descripción: Cámara de prueba de temperatura y humedad constantes en el proceso de prueba, combinada con detección de temperatura multipista, alta temperatura y humedad, condensación (condensación), temperatura y humedad combinadas, ciclo de temperatura lento... Durante el proceso de prueba, el sensor fijado a la superficie del producto de prueba, que se puede utilizar para medir la temperatura de la superficie o la temperatura interna del producto de prueba. A través de este módulo de detección de temperatura de múltiples pistas, las condiciones establecidas, la temperatura y humedad reales, la temperatura de la superficie del producto de prueba y la misma medición y registro se pueden integrar en un archivo de curva sincrónico para su posterior almacenamiento y análisis.
Aplicaciones de detección y control de temperatura de la superficie de la cámara de prueba de choque térmico: [tiempo de permanencia basado en el control de la temperatura de la superficie], [registro de medición de la temperatura de la superficie del proceso de choque de temperatura]
Descripción: El sensor de temperatura de 8 rieles se fija a la superficie del producto de prueba y se aplica al proceso de choque de temperatura. El tiempo de permanencia se puede contar hacia atrás según la llegada de la temperatura superficial. Durante el proceso de impacto, las condiciones de fraguado, la temperatura de prueba, la temperatura de la superficie del producto de prueba y la misma medición y registro se pueden integrar en una curva sincrónica.
Aplicación de detección y control de temperatura de la superficie de la cámara de prueba del ciclo de temperatura: [La variabilidad de la temperatura del ciclo de temperatura y el tiempo de permanencia se controlan de acuerdo con la temperatura de la superficie del producto de prueba]
Descripción: La prueba del ciclo de temperatura es diferente de la prueba de choque de temperatura. La prueba de choque de temperatura utiliza la energía máxima del sistema para realizar cambios de temperatura entre temperaturas altas y bajas, y su tasa de cambio de temperatura es tan alta como 30 ~ 40 ℃ /min. La prueba del ciclo de temperatura requiere un proceso de cambios de temperatura alta y baja, y su variabilidad de temperatura se puede configurar y controlar. Sin embargo, las nuevas especificaciones y las condiciones de prueba de los fabricantes internacionales han comenzado a exigir que la variabilidad de la temperatura se refiera a la temperatura de la superficie del producto de prueba, no a la temperatura del aire, y el control de variabilidad de la temperatura de la especificación del ciclo de temperatura actual. Según las especificaciones de la superficie del producto de prueba son [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... Además, el tiempo de residencia de temperaturas altas y bajas también puede basarse en la superficie de prueba, en lugar de la temperatura del aire.
Aplicaciones de detección y control de temperatura de la superficie de la cámara de prueba de detección de estrés cíclico de temperatura:
Instrucciones: Máquina de prueba de detección de tensión por ciclo de temperatura, combinada con medición de temperatura de múltiples rieles, en la variabilidad de temperatura de la detección de tensión, puede optar por usar [temperatura del aire] o [temperatura de la superficie del producto de prueba] para controlar la variabilidad de la temperatura, además, En el proceso residente de alta y baja temperatura, el tiempo recíproco también se puede controlar según la superficie del producto de prueba. De acuerdo con las especificaciones pertinentes (GJB1032, IEST) y los requisitos de las organizaciones internacionales, de acuerdo con la definición de GJB1032 en el punto de medición de temperatura y tiempo de residencia de detección de tensión, 1. El número de termopares fijados en el producto no será inferior a 3, y el punto de medición de temperatura del sistema de enfriamiento no deberá ser inferior a 6, 2. Asegúrese de que la temperatura de 2/3 de los termopares del producto esté establecida en ±10 ℃, además, de acuerdo con los requisitos de IEST (Internacional Association for Environmental Science and Technology), el tiempo de residencia debe alcanzar el tiempo de estabilización de temperatura más 5 minutos o el tiempo de prueba de rendimiento.
Aplicación de detección de temperatura de superficie sin horno de aire (cámara de prueba de convección natural):
Descripción: Mediante la combinación de un horno sin viento (cámara de prueba de convección natural) y un módulo de detección de temperatura multipista, se genera la temperatura ambiente sin ventilador (convección natural) y se integra la prueba de detección de temperatura relevante. Esta solución se puede aplicar a la prueba de temperatura ambiente real de productos electrónicos (como: servidor en la nube, 5G, interior de vehículos eléctricos, ambiente interior sin aire acondicionado, inversor solar, televisor LCD grande, compartidor de Internet en el hogar, oficina 3C, computadora portátil, computadora de escritorio). , consola de juegos....... Etc.).
Inversor: prueba de confiabilidad
Prueba de confiabilidad del inversor, también conocida como convertidor de voltaje, su función es convertir bajo voltaje de CC en alto voltaje de CA, algunos equipos electrónicos deben funcionar con energía de CA, pero nosotros proporcionamos energía de CC, en este momento debe usar el inversor, directo corriente en corriente alterna para accionar las piezas electrónicas. Prueba de confiabilidad del inversor, también conocida como convertidor de voltaje, su función es convertir bajo voltaje de CC en alto voltaje de CA, algunos equipos electrónicos deben funcionar con energía de CA, pero nosotros proporcionamos energía de CC, en este momento debe usar el inversor, directo corriente en corriente alterna para accionar las piezas electrónicas.
Condiciones de prueba relevantes:
Artículo
temperatura
tiempo
otro
Prueba inicial a temperatura normal.
25℃
TIEMPO≥2 horas
-
Prueba inicial de baja temperatura
0 ℃ o -5 °C
TIEMPO≥2 horas
-
Prueba inicial de alta temperatura
60℃
TIEMPO≥2 horas
-
Prueba de alta temperatura y alta humedad.
40 ℃/95% HR
240 horas
-
Prueba de almacenamiento a alta temperatura
70 ℃
TIEMPO≥96 horas o 240 horas
-
Prueba de almacenamiento a baja temperatura -1
-20°C
TIEMPO≥96 horas
-
Prueba de almacenamiento a baja temperatura -2
-40℃
240 horas
-
Prueba de almacenamiento a alta temperatura y alta humedad.
40 ℃/90% HR
TIEMPO≥96 horas
-
Prueba de ciclo de temperatura
-20 ℃ ~ 70 ℃
5 ciclo
Temperatura ambiente ↓-20 ℃(4 horas)↓ Temperatura ambiente (90%RH.4 horas)↓70°C(4 horas)↓ Temperatura ambiente (4 horas)
Prueba de carga de alta temperatura
55℃
carga equivalente, 1.000 horas
-
prueba de vida
40°C
MTBF≥40000 horas
-
prueba de encendido/apagado (ciclo de encendido)
-
-
1 min: encendido, 1 min: apagado, 5000 ciclos usando carga equivalente
Prueba de vibración
-
-
Aceleración 3q, frecuencia 10~55HZ, X, Y, Z tres direcciones 10 minutos cada una, un total de 30 minutos
Prueba de impacto
-
-
Aceleración de 80 g, 10 ms cada vez, tres veces en las direcciones X, Y, Z
Nota 1: El módulo probado debe colocarse a temperatura normal (15~35° C, 45~65%RH) durante una hora antes de realizar la prueba.
Equipo aplicable:
1. Cámara de prueba de alta y baja temperatura
2. Cámara de prueba de alta temperatura y alta humedad
3. Cámara de prueba de ciclo de temperatura rápida
Estándar de prueba IEC 61646 para módulos fotoeléctricos solares de película delgadaA través de la medición de diagnóstico, medición eléctrica, prueba de irradiación, prueba ambiental, prueba mecánica, cinco tipos de modo de prueba e inspección, confirma la confirmación del diseño y los requisitos de aprobación del formulario de energía solar de película delgada, y confirma que el módulo puede operar en el entorno climático general. requerido por la especificación durante mucho tiempo.IEC 61646-10.1 Procedimiento de inspección visualObjetivo: comprobar si hay defectos visuales en el módulo.Rendimiento en STC según IEC 61646-10.2 Condiciones de prueba estándarObjetivo: Utilizando luz natural o un simulador de clase A, en condiciones de prueba estándar (temperatura de la batería: 25 ± 2 ℃, irradiancia: 1000 wm ^ -2, distribución de irradiación del espectro solar estándar de acuerdo con IEC891), pruebe el rendimiento eléctrico del módulo con carga. cambiar.IEC 61646-10.3 Prueba de aislamientoObjetivo: Probar si existe un buen aislamiento entre las partes portadoras de corriente y el marco del módulo.IEC 61646-10.4 Medición de coeficientes de temperatura.Objetivo: Probar el coeficiente de temperatura actual y el coeficiente de temperatura de voltaje en la prueba del módulo. El coeficiente de temperatura medido es válido sólo para la irradiación utilizada en la prueba. Para módulos lineales, es válido dentro del ±30% de esta irradiación. Este procedimiento se suma al IEC891, que especifica la medición de estos coeficientes de celdas individuales en un lote representativo. El coeficiente de temperatura del módulo de células solares de película delgada depende del proceso de tratamiento térmico del módulo involucrado. Cuando se trate del coeficiente de temperatura, se deberán indicar las condiciones de la prueba térmica y los resultados de irradiación del proceso.IEC 61646-10.5 Medición de la temperatura nominal de funcionamiento de la celda (NOCT)Objetivo: Probar el NOCT del módulo.Rendimiento IEC 61646-10.6 en NOCTObjetivo: Cuando la temperatura nominal de funcionamiento de la batería y la irradiancia son 800 Wm^-2, bajo la condición de distribución de irradiancia del espectro solar estándar, el rendimiento eléctrico del módulo varía con la carga.IEC 61646-10.7 Rendimiento a baja irradianciaObjetivo: Determinar el rendimiento eléctrico de módulos bajo carga bajo luz natural o simulador clase A a 25 ℃ y 200 Wm^-2 (medido con celda de referencia adecuada).IEC 61646-10.8 Pruebas de exposición al aire libreObjetivo: Realizar una evaluación desconocida de la resistencia del módulo a la exposición a condiciones exteriores y mostrar cualquier efecto de degradación que no pudo ser detectado por el experimento o prueba.IEC 61646-10.9 Prueba de punto calienteObjetivo: Determinar la capacidad del módulo para resistir efectos térmicos, como el envejecimiento del material de embalaje, el agrietamiento de la batería, fallas de conexión interna, sombras locales o bordes manchados que pueden causar tales defectos.Prueba UV IEC 61646-10.10 (prueba UV)Objetivo: Para confirmar la capacidad del módulo para resistir la radiación ultravioleta (UV), la nueva prueba UV se describe en IEC1345 y, si es necesario, el módulo debe exponerse a la luz antes de realizar esta prueba.Prueba de ciclos térmicos IEC61646-10.11 (ciclos térmicos)Objetivo: Confirmar la capacidad del módulo para resistir la falta de homogeneidad térmica, la fatiga y otras tensiones debidas a cambios repetidos de temperatura. El módulo debe recocerse antes de recibir esta prueba. [Prueba previa a I-V] se refiere a la prueba después del recocido; tenga cuidado de no exponer el módulo a la luz antes de la prueba I-V final.Requisitos de prueba:a. Instrumentos para monitorear la continuidad eléctrica dentro de cada módulo durante todo el proceso de prueba.b. Monitorear la integridad del aislamiento entre uno de los extremos empotrados de cada módulo y el marco o marco de soporte.do. Registre la temperatura del módulo durante toda la prueba y controle cualquier circuito abierto o falla a tierra que pueda ocurrir (sin circuito abierto intermitente ni falla a tierra durante la prueba).d.La resistencia de aislamiento deberá cumplir los mismos requisitos que la medición inicial.IEC 61646-10.12 Prueba de ciclo de congelación de humedadPropósito: Para probar la resistencia del módulo a la influencia de la temperatura bajo cero posterior bajo alta temperatura y humedad, esto no es una prueba de choque térmico, antes de recibir la prueba, el módulo debe recocerse y someterse a una prueba de ciclo térmico, [ [Prueba Pre-I-V] se refiere al ciclo térmico después de la prueba; tenga cuidado de no exponer el módulo a la luz antes de la prueba I-V final.Requisitos de prueba:a. Instrumentos para monitorear la continuidad eléctrica dentro de cada módulo durante todo el proceso de prueba.b. Monitorear la integridad del aislamiento entre uno de los extremos empotrados de cada módulo y el marco o marco de soporte.do. Registre la temperatura del módulo durante toda la prueba y controle cualquier circuito abierto o falla a tierra que pueda ocurrir (sin circuito abierto intermitente ni falla a tierra durante la prueba).d. La resistencia de aislamiento deberá cumplir los mismos requisitos que la medición inicial.IEC 61646-10.13 Prueba de calor húmedo (calor húmedo)Objetivo: Probar la capacidad del módulo para resistir la infiltración de humedad a largo plazo.Requisitos de prueba: la resistencia de aislamiento deberá cumplir los mismos requisitos que la medición inicial.IEC 61646-10.14 Robustez de las terminacionesObjetivo: Determinar si la unión entre el extremo del cable y el extremo del cable al cuerpo del módulo puede soportar la fuerza durante la instalación y operación normales.Prueba de torsión IEC 61646-10.15Objetivo: Detectar posibles problemas causados por la instalación del módulo en una estructura imperfectaIEC 61646-10.16 Prueba de carga mecánicaPropósito: El propósito de esta prueba es determinar la capacidad del módulo para soportar viento, nieve, hielo o cargas estáticas.IEC 61646-10.17 Prueba de granizoObjetivo: Verificar la resistencia al impacto del módulo ante granizo.IEC 61646-10.18 Prueba de inmersión ligeraObjetivo: Estabilizar las propiedades eléctricas de módulos de película delgada simulando la irradiación solar.IEC 61646-10.19 Pruebas de recocido (recocido)Objetivo: El módulo de película se recoce antes de la prueba de verificación. Si no está recocido, el calentamiento durante el procedimiento de prueba posterior puede enmascarar la atenuación causada por otras causas.IEC 61646-10.20 Prueba de corriente de fuga húmedaPropósito: Evaluar el aislamiento del módulo en condiciones de funcionamiento húmedas y verificar que la humedad de la lluvia, la niebla, el rocío o la nieve derretida no ingrese a las partes vivas del circuito del módulo, lo que puede causar corrosión, fallas a tierra o riesgos de seguridad.
Prueba de ciclo de temperatura IEEE1513, prueba de congelación de humedad y prueba de humedad térmica 1Entre los requisitos de prueba de confiabilidad ambiental de las celdas, el receptor y el módulo de células solares concentradas tienen sus propios métodos de prueba y condiciones de prueba en la prueba de ciclo de temperatura, prueba de congelación de humedad y prueba de humedad térmica, y también existen diferencias en la confirmación de calidad después. la prueba. Por lo tanto, IEEE1513 tiene tres pruebas: prueba de ciclo de temperatura, prueba de congelación de humedad y prueba de humedad térmica en la especificación, y sus diferencias y métodos de prueba se clasifican para referencia de todos.Fuente de referencia: IEEE Std 1513-2001Prueba de ciclo térmico IEEE1513-5.7 Prueba de ciclo térmico IEEE1513-5.7Objetivo: Determinar si el extremo receptor puede soportar adecuadamente la falla causada por la diferencia de expansión térmica entre las piezas y el material de la junta, especialmente la junta de soldadura y la calidad del paquete. Antecedentes: Las pruebas de ciclos de temperatura de células solares concentradas revelan fatiga de soldadura de disipadores de calor de cobre y requieren una transmisión ultrasónica completa para detectar el crecimiento de grietas en las células (SAND92-0958 [B5]).La propagación de grietas es una función del número del ciclo de temperatura, la junta de soldadura completa inicial, el tipo de junta de soldadura, entre la batería y el radiador debido al coeficiente de expansión térmica y los parámetros del ciclo de temperatura, después de la prueba del ciclo térmico para verificar la estructura del receptor del Calidad del material de embalaje y aislamiento. Hay dos planes de prueba para el programa, probados de la siguiente manera:Programa A y Programa BProcedimiento A: Pruebe la resistencia del receptor ante el estrés térmico causado por la diferencia de expansión térmica.Procedimiento B: Ciclo de temperatura antes de la prueba de congelación de humedadAntes del pretratamiento, se enfatiza que los defectos iniciales del material receptor son causados por la congelación húmeda real. Para adaptarse a diferentes diseños de energía solar concentrada, se pueden comprobar las pruebas de ciclo de temperatura del programa A y del Programa B, que se enumeran en la Tabla 1 y la Tabla 2.1. Estos receptores están diseñados con células solares conectadas directamente a radiadores de cobre, y las condiciones requeridas se enumeran en la tabla de la primera fila.2. Esto garantizará que se descubran posibles mecanismos de falla que puedan provocar defectos durante el proceso de desarrollo. Estos diseños adoptan diferentes métodos y pueden utilizar condiciones alternativas como se muestra en la tabla para despegar el radiador de la batería.La Tabla 3 muestra que la porción receptora realiza un ciclo de temperatura del programa B antes de la alternativa.Dado que el programa B prueba principalmente otros materiales en el extremo receptor, se ofrecen alternativas para todos los diseños.Tabla 1 - Prueba del procedimiento del ciclo de temperatura para receptoresPrograma A- Ciclo térmicoOpciónTemperatura máximaNúmero total de ciclosSolicitud actualDiseño requeridoTCR-A110℃250NoLa batería está soldada directamente al radiador de cobre.TCR-B90℃500NoOtros registros de diseñoTCR-C90℃250I(aplicado) = IscOtros registros de diseñoTabla 2 - Prueba del procedimiento del ciclo de temperatura del receptorProcedimiento B- Ciclo de temperatura antes de la prueba de congelación húmedaOpciónTemperatura máximaNúmero total de ciclosSolicitud actualDiseño requeridoHFR-A 110℃100NoDocumentación de todos los diseños. HFR-B 90℃200NoDocumentación de todos los diseños. HFR-C 90℃100I(aplicado) = IscDocumentación de todos los diseños. Procedimiento: El extremo receptor se someterá a un ciclo de temperatura entre -40 °C y la temperatura máxima (siguiendo el procedimiento de prueba en la Tabla 1 y Tabla 2), la prueba del ciclo se puede colocar en una o dos cajas de cámara de prueba de choque de temperatura del gas, no se debe utilizar el ciclo de choque líquido, el tiempo de permanencia es de al menos 10 minutos y la temperatura alta y baja debe estar dentro del requisito de ±5 °C. La frecuencia de los ciclos no debe ser mayor a 24 ciclos al día ni menor a 4 ciclos al día, la frecuencia recomendada es de 18 veces al día.El número de ciclos térmicos y la temperatura máxima requerida para las dos muestras, se refieren a la Tabla 3 (Procedimiento B de la Figura 1), luego de lo cual se realizará una inspección visual y una prueba de características eléctricas (consulte 5.1 y 5.2). Estas muestras se someterán a una prueba de congelación húmeda, según 5.8, y un receptor más grande se referirá a 4.1.1 (este procedimiento se ilustra en la Figura 2).Antecedentes: El propósito de la prueba del ciclo de temperatura es acelerar la prueba que aparecerá en el mecanismo de falla a corto plazo, previo a la detección de falla del hardware solar de concentración, por lo tanto, la prueba incluye la posibilidad de ver una amplia diferencia de temperatura más allá del módulo. rango, el límite superior del ciclo de temperatura de 60 ° C se basa en la temperatura de ablandamiento de muchas lentes acrílicas del módulo; para otros diseños, la temperatura del módulo. El límite superior del ciclo de temperatura es 90 °C (ver Tabla 3)Tabla 3- Lista de condiciones de prueba para ciclos de temperatura del móduloProcedimiento B Pretratamiento del ciclo de temperatura antes de la prueba de congelación húmedaOpciónTemperatura máximaNúmero total de ciclosSolicitud actualDiseño requeridoMTC-A 90℃50NoDocumentación de todos los diseños. TEM-B 60℃200NoEs posible que se requiera un diseño de módulo de lente de plástico
Prueba de ciclo de temperatura IEEE1513 y prueba de congelación húmeda, prueba de calor y humedad 2Pasos:Ambos módulos realizarán 200 ciclos de temperatura entre -40 °C y 60 °C o 50 ciclos de temperatura entre -40 °C y 90 °C, como se especifica en ASTM E1171-99.Nota:ASTM E1171-01: Método de prueba para módulo fotoeléctrico a temperatura y humedad del circuitoNo es necesario controlar la humedad relativa.La variación de temperatura no debe exceder los 100 ℃/hora.El tiempo de residencia debe ser de al menos 10 minutos y la temperatura alta y baja debe estar dentro del requisito de ±5 ℃Requisitos:a. El módulo será inspeccionado para detectar cualquier daño o degradación evidente después de la prueba del ciclo.b. El módulo no debe presentar grietas ni deformaciones y el material de sellado no debe deslaminarse.do. Si hay una prueba de función eléctrica selectiva, la potencia de salida debe ser del 90% o más en las mismas condiciones que muchos parámetros básicos originales.Agregado:IEEE1513-4.1.1 Muestra de prueba del receptor o módulo representativo, si el tamaño de un módulo o receptor completo es demasiado grande para caber en una cámara de prueba ambiental existente, el representante del módulo o la muestra de prueba del receptor se puede sustituir por un módulo o receptor de tamaño completo.Estas muestras de prueba deben ensamblarse especialmente con un receptor de reemplazo, como si contuvieran una cadena de celdas conectadas a un receptor de tamaño completo, la cadena de baterías debe ser larga e incluir al menos dos diodos de derivación, pero en cualquier caso tres celdas son relativamente pocas. , que resume la inclusión de enlaces con el terminal receptor de repuesto debe ser el mismo que el del módulo completo.El receptor de reemplazo incluirá componentes representativos de los otros módulos, incluida la lente/carcasa de la lente, el receptor/carcasa del receptor, el segmento trasero/la lente del segmento trasero, la caja y el conector del receptor; se probarán los procedimientos A, B y C.Se deben utilizar dos módulos de tamaño completo para el procedimiento de prueba de exposición al aire libre D.IEEE1513-5.8 Prueba del ciclo de congelación de humedad Prueba del ciclo de congelación de humedadReceptorObjetivo:Determinar si la parte receptora es suficiente para resistir el daño por corrosión y la capacidad de la expansión de la humedad para expandir las moléculas del material. Además, el vapor de agua congelado es la tensión para determinar la causa de la falla.Procedimiento:Las muestras después del ciclo de temperatura se probarán de acuerdo con la Tabla 3 y se someterán a una prueba de congelación húmeda a 85 ℃ y -40 ℃, humedad del 85 % y 20 ciclos. Según ASTM E1171-99, el extremo receptor con gran volumen deberá referirse a 4.1.1Requisitos:La parte receptora deberá cumplir con los requisitos de 5.7. Saque del tanque ambiental dentro de 2 a 4 horas y la parte receptora debe cumplir con los requisitos de la prueba de fuga de aislamiento de alto voltaje (consulte 5.4).móduloObjetivo:Determine si el módulo tiene capacidad suficiente para resistir la corrosión dañina o la ampliación de las diferencias de unión de materiales.Procedimiento: Ambos módulos serán sometidos a pruebas de congelación húmeda durante 20 ciclos, 4 o 10 ciclos a 85°C como se muestra en ASTM E1171-99.Tenga en cuenta que la temperatura máxima de 60 °C es inferior a la sección de prueba de congelación húmeda en el extremo receptor.Se completará una prueba completa de aislamiento de alto voltaje (ver 5.4) después de un ciclo de dos a cuatro horas. Después de la prueba de aislamiento de alta tensión, se llevará a cabo la prueba de rendimiento eléctrico como se describe en 5.2. En módulos grandes también se podrán completar, ver 4.1.1.Requisitos:a. El módulo comprobará si hay algún daño o degradación evidente después de la prueba y registrará cualquier daño.b. El módulo no debe presentar grietas, deformaciones ni corrosión grave. No debe haber capas de material sellador.do. El módulo deberá pasar la prueba de aislamiento de alto voltaje como se describe en IEEE1513-5.4.Si hay una prueba de función eléctrica selectiva, la potencia de salida puede alcanzar el 90% o más en las mismas condiciones de muchos parámetros básicos originales.IEEE1513-5.10 Prueba de calor húmedo IEEE1513-5.10 Prueba de calor húmedoObjetivo: Evaluar el efecto y la capacidad del extremo receptor para resistir la infiltración de humedad a largo plazo.Procedimiento: El receptor de prueba se prueba en una cámara de prueba ambiental con 85 % ± 5 % de humedad relativa y 85 ° C ± 2 ° C como se describe en ASTM E1171-99. Esta prueba debe completarse en 1000 horas, pero se pueden agregar 60 horas adicionales para realizar una prueba de fuga de aislamiento de alto voltaje. La parte receptora se puede utilizar para realizar pruebas.Requisitos: El extremo receptor debe salir de la cámara de prueba de calor húmedo durante 2 ~ 4 horas para pasar la prueba de fugas de aislamiento de alto voltaje (ver 5.4) y pasar la inspección visual (ver 5.1). Si hay una prueba de función eléctrica selectiva, la potencia de salida debe ser del 90% o más en las mismas condiciones de muchos parámetros básicos originales.Procedimientos de inspección y prueba del módulo IEEE1513IEEE1513-5.1 Procedimiento de inspección visualPropósito: Establecer el estado visual actual para que el extremo receptor pueda comparar si pasan cada prueba y garantizar que cumplen con los requisitos para pruebas adicionales.Prueba de rendimiento eléctrico IEEE1513-5.2Objetivo: Describir las características eléctricas del módulo de prueba y del receptor y determinar su potencia máxima de salida.Prueba de continuidad de tierra IEEE1513-5.3Propósito: Verificar la continuidad eléctrica entre todos los componentes conductores expuestos y el módulo de puesta a tierra.Prueba de aislamiento eléctrico IEEE1513-5.4 (seco hi-po)Propósito: Garantizar que el aislamiento eléctrico entre el módulo del circuito y cualquier parte conductora de contacto externo sea suficiente para evitar la corrosión y salvaguardar la seguridad de los trabajadores.Prueba de resistencia de aislamiento húmedo IEEE1513-5.5Propósito: Verificar que la humedad no pueda penetrar la parte electrónicamente activa del extremo receptor, donde podría causar corrosión, falla a tierra o identificar peligros para la seguridad humana.Prueba de pulverización de agua IEEE1513-5.6Objetivo: La prueba de resistencia húmeda en campo (FWRT) evalúa el aislamiento eléctrico de los módulos de células solares en función de las condiciones de funcionamiento de humedad. Esta prueba simula lluvia intensa o rocío en su configuración y cableado para verificar que no ingrese humedad al circuito de matriz utilizado, lo que puede aumentar la corrosividad, causar fallas a tierra y crear riesgos de seguridad eléctrica para el personal o el equipo.Prueba de ciclo térmico IEEE1513-5.7 (Prueba de ciclo térmico)Objetivo: Determinar si el extremo receptor puede soportar adecuadamente la falla causada por la diferencia en la expansión térmica de las piezas y materiales de las juntas.Prueba de ciclo de congelación de humedad IEEE1513-5.8Objetivo: determinar si la pieza receptora es suficientemente resistente a los daños por corrosión y a la capacidad de la expansión de la humedad para expandir las moléculas del material. Además, el vapor de agua congelado es el factor determinante para determinar la causa del fallo.IEEE1513-5.9 Prueba de robustez de terminacionesPropósito: Para asegurar los cables y conectores, aplique fuerzas externas en cada parte para confirmar que sean lo suficientemente fuertes como para mantener los procedimientos de manipulación normales.IEEE1513-5.10 Prueba de calor húmedo (Prueba de calor húmedo)Objetivo: Evaluar el efecto y la capacidad del extremo receptor para resistir la infiltración de humedad a largo plazo. IEEE1513-5.11 Prueba de impacto de granizoObjetivo: Determinar si algún componente, especialmente el condensador, puede sobrevivir al granizo. ES DECIREE1513-5.12 Prueba térmica del diodo de derivación (Prueba térmica del diodo de derivación)Objetivo: Evaluar la disponibilidad de un diseño térmico suficiente y el uso de diodos de derivación con relativa confiabilidad a largo plazo para limitar los efectos adversos de la difusión por desplazamiento térmico del módulo.Prueba de resistencia de punto caliente IEEE1513-5.13 (prueba de resistencia de punto caliente)Objetivo: Evaluar la capacidad de los módulos para soportar cambios de calor periódicos a lo largo del tiempo, comúnmente asociados con escenarios de falla como chips de celdas severamente agrietados o no coincidentes, fallas de circuito abierto de un solo punto o sombras desiguales (porciones sombreadas). IEEE1513-5.14 Prueba de exposición al aire libre (Prueba de exposición al aire libre)Propósito: Para evaluar preliminarmente la capacidad del módulo para resistir la exposición a ambientes exteriores (incluida la radiación ultravioleta), es posible que las pruebas de laboratorio no detecten la efectividad reducida del producto.IEEE1513-5.15 Prueba de daño del haz fuera del ejePropósito: Asegurar que cualquier parte del módulo sea destruida debido a la desviación del módulo del haz de radiación solar concentrada.